Download presentation
Published byPauline Blankenship Modified over 9 years ago
1
Air Electrical Systems of the Airport Kpt. Ing. Luděk Pilný
2
Structure: Radionavigational systems Radiolocational systems
Communication systems Lighting system Display system Recording system
3
Radiolocational systems
RPL – 5 RPL – 5M Radar is an object-detection system that uses radio waves to determine the range, altitude, direction, or speed of objects. It can be used to detect aircraft, ships, spacecraft, guided missiles, motor vehicles, weather formations, and terrain. The radar dish (or antenna) transmits pulses of radio waves or microwaves that bounce off any object in their path. The object returns a tiny part of the wave's energy to a dish or antenna that is usually located at the same site as the transmitter. Radar was secretly developed by several nations before and during World War II. The term RADAR was coined in 1940 by the United States Navy as an acronym for RAdio Detection And Ranging. The term radar has since entered English and other languages as a common noun. RPL-5 is used for detection of aircraft. It rotates steadily, sweeping the airspace with a narrow beam. 4 container Primary radar + antenna Secondary surveillance radar + antenna hijack 7600 – lost comunication 7700 – emergency Precision radar + antenna Control place
4
Communication systems
Telephone switchboard VCS 3020X Radios LPR-96
5
Lighting system Runway end identifier lights (REIL) Runway end lights
Runway edge lights Runway centerline lighting system (RCLS) Touchdown zone lights (TDZL) Taxiway centerline lead-off lights Taxiway centerline lead-on lights Land and hold short lights A precision approach path indicator (PAPI) Runway lighting is used at airports that allow night landings. Seen from the air, runway lights form an outline of the runway. A particular runway may have some or all of the following: Runway end identifier lights (REIL) – unidirectional (facing approach direction) or omnidirectional pair of synchronized flashing lights installed at the runway threshold, one on each side. Runway end lights – a pair of four lights on each side of the runway on precision instrument runways, these lights extend along the full width of the runway. These lights show green when viewed by approaching aircraft and red when seen from the runway. Runway edge lights – white elevated lights that run the length of the runway on either side. On precision instrument runways, the edge-lighting becomes yellow in the last 2,000 ft (610 m) of the runway, or last third of the runway, whichever is less. Taxiways are differentiated (dif€renšiejtyd) by being bordered by blue lights, or by having green centre lights, depending on the width of the taxiway, and the complexity of the taxi pattern. Runway centerline lighting system (RCLS) – lights embedded into the surface of the runway at 50 ft (15 m) intervals along the runway centerline on some precision instrument runways. White except the last 900 m (3,000 ft): alternate white and red for next 600 m (1,969 ft) and red for last 300 m (984 ft). Touchdown zone lights (TDZL) – rows of white light bars (with three in each row) at 30 or 60 m (98 or 197 ft) intervals on either side of the centerline for 900 m (3,000 ft). Taxiway centerline lead-off lights – installed along lead-off markings, alternate green and yellow lights embedded (zapuštěny) into the runway pavement. It starts with green light at about the runway centerline to the position of first centerline light beyond the Hold-Short markings on the taxiway. Taxiway centerline lead-on lights – installed the same way as taxiway centerline lead-off Lights, but directing airplane traffic in the opposite direction. Land and hold short lights – a row of white pulsating lights installed across the runway to indicate hold short position on some runways that are facilitating land and hold short operations (LAHSO). Approach lighting system (ALS) – a lighting system installed on the approach end of an airport runway and consists of a series of lightbars, strobe lights, or a combination of the two that extends outward from the runway end. There is a sveral types of lighting systems according intensity HIRL, MIRL, LIRL for high, medium, low intensity runway lighting . PCL (pilot controlled lighting).
6
Lighting system Ukázka dráhového světelného systému
7
A precision approach path indicator (PAPI)
A precision approach path indicator (PAPI) is a visual aid that provides guidance information to help a pilot acquire and maintain the correct approach (in the vertical plane) to an airport or an aerodrome. It is generally located beside the runway approximately 300 meters beyond the landing threshold of the runway. The greater number of red lights visible compared with the number of white lights visible in the picture means that the aircraft is flying below the glideslope. To use the guidance information provided by the aid to follow the correct glide slope a pilot would manoeuvre the aircraft to obtain an equal number of red and white lights. Student pilots in initial training may use the mnemonic, "RED on WHITE you're all right, RED on RED and you're dead" until they are used to the lights' meaning. At night the light bars can be seen at ranges of at least 20 miles (32 km).
8
Display system Letvis 99-M Radarcentrum R-950 (DVAZ, PAR) AMS-1
LETVIS ASM / AMC systems LETVIS ASM system provides automated data processing and operations of the airspace management at all three ASM levels: strategic, pre-tactical and tactical. Its configuration is always customized and implements local ASM standards, differences in the air force air space management procedures and architecture of airspace management in particular.
9
Radionavigational systems
ILS (LLZ, GP) DME NDB (TDV-100) and L (TDV-50) MKR Distance measuring equipment (DME) provides pilots with a slant (šikmý) range measurement of distance to the runway in nautical miles. DMEs are augmenting or replacing markers in many installations. The DME provides more accurate and continuous monitoring of correct progress on the ILS glide slope to the pilot, and does not require an installation outside the airport boundary. A non-directional (radio) beacon (NDB) is a radio transmitter at a known location, used as an aviation or marine navigational aid. As the name implies, the signal transmitted does not include inherent directional information, in contrast to other navigational aids such as low frequency radio range, VHF omnidirectional range (VOR) and TACAN. NDB signals follow the curvature of the Earth, so they can be received at much greater distances at lower altitudes, a major advantage over VOR. However, NDB signals are also affected more by atmospheric conditions, mountainous terrain, coastal refraction and electrical storms, particularly at long range. Nesměrový rádiový maják TDV-50 je určen pro stacionární použití na stanovištích L (Locator – dříve „bližná“). Je náhradou za starší typy majáků TDV 60 v systému přístrojového přiblížení na přistání a pro nouzové spojení v režimu HORMON.
10
ILS components Localizer Glide slope (path) Marker beacons
Compass locator Approach light sytem Runway markings An instrument landing system (ILS) is a ground-based instrument approach system that provides precision lateral and vertical guidance to an aircraft approaching and landing on a runway, using a combination of radio signals and, in many cases, high-intensity lighting arrays to enable a safe landing during instrument meteorological conditions (IMC), such as low ceilings or reduced visibility due to fog, rain, or blowing snow. An instrument approach procedure chart is published for each ILS approach to provide the information needed to fly an ILS approach during instrument flight rules (IFR) operations. A chart includes the radio frequencies used by the ILS components or navaids and the prescribed minimum visibility requirements. Radio-navigation aids must provide a certain accuracy (set by international standards of CAST/ICAO); to ensure this is the case, flight inspection organizations periodically check critical parameters with properly equipped aircraft to calibrate and certify ILS precision. An aircraft approaching a runway is guided by the ILS receivers in the aircraft by performing modulation depth comparisons. Many aircraft can route signals into the autopilot to fly the approach automatically. An ILS consists of two independent sub-systems. The localizer provides lateral guidance; the glide slope provides vertical guidance. ORIGINAL WIK Instrument Landing System (ILS) je elektronický přístrojový přistávací systém. Byl vyvinut ve 40. letech dvacátého století a schválen k použití organizací ICAO v roce Používá se dodnes, prakticky beze změn. Systém poskytuje přesné informace o okamžité poloze letadla vzhledem k referenční trajektorii, vytvořené dvěma majáky pomocí směrového rádiového signálu. ILS je definován jako „přesný“ přistávací systém, jelikož obsahuje podle definice i vertikální složku navádění (GS/GP). Kurzový maják („lokalizér - LLZ“) je v principu tvořen dvěma pozemními radiovými vysílači, pracující na shodném nosném kmitočtu v pásmu VKV, s anténními systémy navrženými tak, aby vyzařovaly ve směru osy přistávací dráhy, jeden ale mírně vpravo a druhý mírně vlevo. Nosná vlna je přitom modulována u jednoho vysílače kmitočtem 90 Hz, u druhého 150 Hz. Z pohledu přibližujícího letounu to vypadá tak, že pokud se blíží přesně v ose dráhy, kde je úroveň signálu z obou vysílačů stejná, ukazuje mu ručka indikátoru na střed. Pokud letoun vybočí doprava nebo doleva, zvýší se úroveň jednoho z modulačních signálů a ručička indikátoru se vychýlí na příslušnou stranu. Anténní systém může být konstruován tak, že vyzařuje i dozadu, pro opačný směr přistání, a bývá umístěn cca 100 m za koncem dráhy. Sestupový maják (angl. „glideslope/glidepath - GS/GP“) pracuje na stejném principu, pouze jsou osy vyzařování obou vysílačů mírně vychýleny nahoru nad a dolů pod sestupovou rovinu. Letoun klesá k VPD tak, aby oba modulační signály měly stejnou intenzitu. Nosný kmitočet je oproti LLZ odlišný (ale párově přiřazený), přiblížení na zadní paprsek možné není. Anténní systém bývá umístěn po boku dráhy, v blízkosti dotykové zóny. ILS indikátor (en: HSI) je indikační přístroj na panelu v pilotní kabině, který na základě signálů z palubních přijímačů LLZ a GP ukazuje polohu letounu vůči ideální sestupové ose. Signály z přijímačů mohou být také použity pro řízení autopilota. Použití ILS Antény sestupového majáku po boku dotykové zóny (An-124 v Brně) ILS umožňuje letadlům bezpečné konečné přiblížení podle přístrojů, do takové výšky a vzdálenosti od prahu dráhy, kdy může pilot bezpečně přistát (nebo přistání zrušit). Výhodou ILS je také, že signál může užívat i autopilot → autoland (přistání řízené autopilotem). V praxi přiblížení probíhá zpravidla tak, že závěrečnou zatáčku do osy dráhy provádí posádka ve vodorovném letu na výšce kolem 1 km tak, aby stroj pod mírným úhlem protnul rovinu LLZ. Průsečík přitom musí být v takové vzdálenosti od prahu VPD, aby se letoun nacházel pod rovinou sestupu GP. Po srovnání stroje do kurzu (buď ručně, nebo autopilotem) pokračuje posádka ve vodorovném letu tak dlouho, dokud neprotne sestupovou rovinu GS. Od toho okamžiku sestupuje podle přístrojů zpravidla až do prostoru nad práh VPD a vlastní přistání na dráze se už provádí obvykle ručně. Jsou ale i letiště, kde se na GP přibližuje shora, konečná fáze se také může lišit podle kategorie ILS. Při odchylce od ideální sestupové osy musí být zásahy do řízení letounu prováděny citlivě, aby to nevedlo k nežádoucím překmitům, případně až kličkování podél sestupové osy. Kategorie ILS Podmínky dané kategorie musí splňovat nejen pozemní zařízení včetně pomocného vybavení (systém záložního napájení, pozemní radarové sledování), ale i palubní přístroje letounu. Navíc musí mít i posádka platnou kvalifikaci pro danou kategorii a typ stroje. Kategorie Výška rozhodnutí Minimální RVR CAT I 200 ft/60 m min. 550 m CAT II 100 ft/30 m min. 300 m CAT III A méně než 30 m min. 200 m CAT III B méně než 15 m min. 75 m CAT III C 0 m 0 m
11
Localizer Provides left/right course guidance VHF signal
A localizer is an antenna array normally located beyond the approach end of the runway and generally consists of several pairs of directional antennas. A localizer uses VHF signal.
12
ILS theory of operation
Localizer (LOC, or LLZ until ICAO designated LOC as the official acronym) Main article: Localizer Two signals are transmitted on one of 40 ILS channels. One is modulated at 90 Hz, the other at 150 Hz. These are transmitted from co-located antennas. Each antenna transmits a narrow beam, one slightly to the left of the runway centreline, the other slightly to the right. The localizer receiver on the aircraft measures the difference in the depth of modulation (DDM) of the 90 Hz and 150 Hz signals. The depth of modulation for each of the modulating frequencies is 20 percent when the receiver is on the centreline. The difference between the two signals varies depending on the deviation of the approaching aircraft from the centreline. If there is a predominance of either 90 Hz or 150 Hz modulation, the aircraft is off the centreline. In the cockpit, the needle on the instrument part of the ILS (horizontal situation indicator (HSI), or course deviation indicator (CDI)) shows that the aircraft needs to fly left or right to correct the error to fly toward the centre of the runway. If the DDM is zero, the aircraft is on the LOC centreline coinciding with the physical runway centreline. The pilot controls the aircraft so that the indicator remains centered on the display (provides lateral guidance).
13
Glide slope (path) Provides vertical guidance transmits from separate transmitter UHV signal Paired with the localizer frequency Glide slope (GS) or glide path (GP) A glide slope station uses an antenna array sited to one side of the runway touchdown zone. The GS signal is transmitted on a carrier frequency using a technique similar to that for the localizer. The centre of the glide slope signal is arranged to define a glide path of approximately 3° above horizontal (ground level). The beam is 1.4° deep (0.7° below the glide-path centre and 0.7° above). The pilot controls the aircraft so that the glide slope indicator remains centered on the display to ensure the aircraft is following the glide path to remain above obstructions and reach the runway at the proper touchdown point (provides vertical guidance).
14
Marker beacons Provide ranging informatin
Outer marker allows for G/S check Both visual and aural indications Being phased out Inner marker white inner marker The inner marker, when installed, shall be located so as to indicate in low visibility conditions the imminence(imin(e)ns hrozba) of arrival at the runway threshold. This is typically the position of an aircraft on the ILS as it reaches Category II minima, ideally at a distance of approximately 1,000 ft (300 m) from the threshold. The modulation is repeated Morse-style dots at 3 kHz (····) ("H"). The cockpit indicator is a white lamp that flashes in unison with the received audio code.
15
Compass locator Substitutes for a marker beacon NDB station
Can be used to navigate to Low power station Compas locator completes ILS and we can say, it´s NDB station.
16
Approach light system IFR to VFR transition
Provides lower visibility approaches Become part of airport environment Approach lighting Some installations include medium- or high-intensity approach light systems. Most often, these are at larger airports but many small general aviation airports in the U.S. have approach lights to support their ILS installations and obtain low-visibility minimums. The approach lighting system (abbreviated ALS) assists the pilot in transitioning from instrument to visual flight, and to align the aircraft visually with the runway centerline. Pilot observation of the approach lighting system at the Decision Altitude allows the pilot to continue descending towards the runway, even if the runway or runway lights cannot be seen, since the ALS counts as runway end environment. Decision altitude/height Once established on an approach, the pilot follows the ILS approach path indicated by the localizer and descend along the glide path to the decision height. This is the height at which the pilot must have adequate visual reference to the landing environment (approach or runway lighting) to decide whether to continue the descent to a landing; otherwise, the pilot must execute a missed approach procedure, then try the same approach again, try a different approach, or divert to another airport.
17
Runway markings Clear identification of the touchdown zone
Verification of runway width Identifies runway used
18
ILS scheme
19
ILS scheme
20
ILS scheme
21
ILS displays I/200 ft (61 m)/550 m or 1,800 ft (1,200 ft is approved at some airports), increased to 800 m for single crew operations II/100 ft (30 m)/1,200 feet (370 m)/ICAO and FAA: 350 meters (1,150 ft) or JAA: 300 meters (980 ft). IIIa/No DH/600 feet (180 m) IIIb/No DH/150 feet (46 m) IIIc/No DH/No RVR As of 2012 this category is not yet in operation anywhere in the world as it requires guidance to taxi in zero visibility as well. Category IIIc is not mentioned in EU-OPS.
22
ILS animation
23
Can you tell me where the aircraft during the approach is?
The pilot has to correct to the left and a little upwards.
24
Sources Let 5-2 Wikipedia Youtube My knowledge
25
Do you have any questions? THANK YOU FOR YOUR ATTENTION
DISCUSSION Do you have any questions? THANK YOU FOR YOUR ATTENTION
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.