Presentation is loading. Please wait.

Presentation is loading. Please wait.

MOA-II Microlensing Survey Takahiro Sumi (Nagoya University) the MOA collaboration Abe,F; Bennett,P.D;Bond, I. A.;Fukui,A;Furusawa,K; Hearnshaw, J. B.;Itow,Y;

Similar presentations


Presentation on theme: "MOA-II Microlensing Survey Takahiro Sumi (Nagoya University) the MOA collaboration Abe,F; Bennett,P.D;Bond, I. A.;Fukui,A;Furusawa,K; Hearnshaw, J. B.;Itow,Y;"— Presentation transcript:

1 MOA-II Microlensing Survey Takahiro Sumi (Nagoya University) the MOA collaboration Abe,F; Bennett,P.D;Bond, I. A.;Fukui,A;Furusawa,K; Hearnshaw, J. B.;Itow,Y; Kilmartin, P. M.; Koki, K; Masuda, K.; Matsubara, Y.;Miyake,N; Muraki, Y.; Nagaya,M;Okumura,M; Ohnishi,K;Rattenbury, N. J.; Saitou,T;Sako, T.; Sullivan, D. J.;Sumi, T.;Tristram,P.; Wood, J. N.; Yock, P. C. M. Takahiro Sumi (Nagoya University) the MOA collaboration Abe,F; Bennett,P.D;Bond, I. A.;Fukui,A;Furusawa,K; Hearnshaw, J. B.;Itow,Y; Kilmartin, P. M.; Koki, K; Masuda, K.; Matsubara, Y.;Miyake,N; Muraki, Y.; Nagaya,M;Okumura,M; Ohnishi,K;Rattenbury, N. J.; Saitou,T;Sako, T.; Sullivan, D. J.;Sumi, T.;Tristram,P.; Wood, J. N.; Yock, P. C. M.

2 MOA (since 1995) ( Microlensing Observation in Astrophysics ) ( New Zealand/Mt. John Observatory, Latitude : 44  S, Alt: 1029m ) 1995~1998:MOA-0: 0.6m, 9Mpix 1999~2005:MOA-I : 0.6m, 24Mpix 2005~ :MOA-II: 1.8m, 80Mpix 1995~1998:MOA-0: 0.6m, 9Mpix 1999~2005:MOA-I : 0.6m, 24Mpix 2005~ :MOA-II: 1.8m, 80Mpix

3 MOA (until ~1500) ( The world largest bird which was in NZ ) height:3.5 m weight:240kg can not fly extinct 5 00 years ago ( Maori ate them) witnesses until ~1850. Remind me … height:3.5 m weight:240kg can not fly extinct 5 00 years ago ( Maori ate them) witnesses until ~1850. Remind me … Nessie

4 MOA’s scientific goals 1,Galactic Dark Matter (towards the LMC & SMC) Halo MACHOs or self-lensing? 1,Galactic Dark Matter (towards the LMC & SMC) Halo MACHOs or self-lensing?

5 Halo Dark Matter? or Self-lensing? Tisserand et al.2006 MACHO 5.7 yrs & EROS 5yrs

6 MOA’s scientific goals 1,Galactic Dark Matter (towards the LMC & SMC) Halo MACHOs or self-lensing? 2,The Galactic structure (towards the Bulge) Optical depth time scale,t E Red Clump Giants 1,Galactic Dark Matter (towards the LMC & SMC) Halo MACHOs or self-lensing? 2,The Galactic structure (towards the Bulge) Optical depth time scale,t E Red Clump Giants

7 the Galactic Bar structure (face on, from North)  8kpc  G.C. Obs. 1, Microlensing Optical depth,  (Alcock et al. 2000; Afonso et al.2003; Sumi et al. 2003;Popowski et al. 2004; Hamadache et al. 2006;Sumi et al. 2006) Event Timescale, t E =R E /v t, (Evans & Belokurov,2002, Wood & Mao 2005 )  M=1.6  10 10 M , axis ratio (1:0.3:0.2),  ~20  1, Microlensing Optical depth,  (Alcock et al. 2000; Afonso et al.2003; Sumi et al. 2003;Popowski et al. 2004; Hamadache et al. 2006;Sumi et al. 2006) Event Timescale, t E =R E /v t, (Evans & Belokurov,2002, Wood & Mao 2005 )  M=1.6  10 10 M , axis ratio (1:0.3:0.2),  ~20  2, Brightness of Red Clump Giant (RCG)and RRLyrae stars, (Stanek et al. 1997, Sumi 2004; Collinge, Sumi & Fabrycky, 2006 ) 2, Brightness of Red Clump Giant (RCG)and RRLyrae stars, (Stanek et al. 1997, Sumi 2004; Collinge, Sumi & Fabrycky, 2006 ) 3, Proper motions of RCG, (Sumi, Eyer & Wozniak, 2003; Sumi et al. 2004;Rattenbury et al.2007), Proper motion of 5M stars, I<18 mag,  ~1mas/yr 3, Proper motions of RCG, (Sumi, Eyer & Wozniak, 2003; Sumi et al. 2004;Rattenbury et al.2007), Proper motion of 5M stars, I<18 mag,  ~1mas/yr

8 MOA’s scientific goals 1,Galactic Dark Matter (towards the LMC & SMC) Halo MACHOs or self-lensing? 2,The Galactic structure (towards the Bulge) Optical depth time scale,t E Red Clump Giants 3,Exoplanets (towards the Bulge) Microlensing & transit 1,Galactic Dark Matter (towards the LMC & SMC) Halo MACHOs or self-lensing? 2,The Galactic structure (towards the Bulge) Optical depth time scale,t E Red Clump Giants 3,Exoplanets (towards the Bulge) Microlensing & transit

9 Theoretical v.s. Observation red : Gass Giants 青: Ice planets 緑: Rocky planets Ida & Lin, 2004 100m/s 10m/s 1m/s Simulation Observation

10 Observational targets LMC 50kpc event rate: event rate: LMC,SMC : ~2 events/yr (  ~10 -7 ) LMC,SMC : ~2 events/yr (  ~10 -7 ) Bulge : ~500 events/yr (  ~10 -6 ) Bulge : ~500 events/yr (  ~10 -6 ) Planetary event : ~10 -2 Planetary event : ~10 -2 event rate: event rate: LMC,SMC : ~2 events/yr (  ~10 -7 ) LMC,SMC : ~2 events/yr (  ~10 -7 ) Bulge : ~500 events/yr (  ~10 -6 ) Bulge : ~500 events/yr (  ~10 -6 ) Planetary event : ~10 -2 Planetary event : ~10 -2 7.5kpc, GC 

11 PLANET  FUN Pointing each candidatePointing each candidate High cadenceHigh cadence Strategy based on published photometryStrategy based on published photometry to catch short deviation. to catch short deviation. MOA (NewZealand) OGLE (Chile) Wide fieldWide field Low cadenceLow cadence Continuous surveyContinuous survey Microlensing observation network Survey Group Follow-up Group MicrolensingAlert Anomaly Anomaly Alert Alert Anyone who wants alert is welcome to sign up on the websites.

12 Paczyński’s Legacy The planet discovery via microlensing by collaboration of these groups are Paczyński’s Legacy Idea of the method. Idea of putting data on public and sharing photometry with other groups.  useful to decide strategy to catch rare short planetary deviation. The planet discovery via microlensing by collaboration of these groups are Paczyński’s Legacy Idea of the method. Idea of putting data on public and sharing photometry with other groups.  useful to decide strategy to catch rare short planetary deviation.

13 MOA-I (1999~2005) ( Microlensing Observation in Antrophysics ) ( New Zealand/Mt. John Observatory, Latitude : 44  S, Alt: 1029m ) Mirror : 0.6m CCD : 4k x 6k pix. FOV : 1.3 square deg. Seeing:~2 arcsec Mirror : 0.6m CCD : 4k x 6k pix. FOV : 1.3 square deg. Seeing:~2 arcsec

14 MOA-I filter

15 Difference Image Analysis (DIA) ObservedObservedsubtractedsubtracted

16 Results from MOA-I Mass : Jupiter Sep. : ~3AU Mass : Jupiter Sep. : ~3AU 1, Microlensing Optical depth towads GB (Sumi et al. 2003) 2, LP Variable stars in LMC (Noda et al. 2002,2004) 3, Stellar shape & limb darkning (abe et al.2003;Rattenbury et al.2005) 4, The first planet via microlensing (bond et al.2003) OGLE 2003-BLG-235/MOA 2003-BLG-53 (in collaboration with OGLE) etc…

17 LMC event from MOA-I (RA,DEC)=(05:13:48.7,-69:45:24.3) T= 2,122 days N= 3,743,244 stars T= 2,122 days N= 3,743,244 stars t E =70.80 u min =0.1754 t 0 =1818.2308 RED BLUE

18 LMC event from MOA-I t E =70.80 u min =0.1754 t 0 =1818.2308 RED BLUE

19 Planetary transits in MOA-I Bulge data #of stars <1.0 %: 0.1M stars <2.0 %: 1M stars Planning photometric follow-up by IRSF 1.4m IR telescope at SAAO #of stars <1.0 %: 0.1M stars <2.0 %: 1M stars Planning photometric follow-up by IRSF 1.4m IR telescope at SAAO

20 MOA-II1.8m telescope ( New Zealand/Mt. John Observatory at NZ, 44  S ) Mirror : 1.8m CCD : 8k x 10k pix. FOV : 2.2 deg. 2 Mirror : 1.8m CCD : 8k x 10k pix. FOV : 2.2 deg. 2 First light : 3/2005 Survey start : 4/2006

21 MOA-cam3 CCD :8k x 10k pix. (10 E2V CCD4482) Pixel size: 15μm FOV : 2.2 deg. 2 CCD :8k x 10k pix. (10 E2V CCD4482) Pixel size: 15μm FOV : 2.2 deg. 2

22 MOA-II filter

23 Observational time&Operation rate Operation rate = observation time / night time ≒ clear time Bulge

24 Observation towards LMC by MOA-II ~3obs/night~10obs/night Start alert in a few weeks

25 Discriminating from Super Nova (from SuperMACHO web)

26 Survey towards the Galactic Bulge why ?  need Wide Field for Many stars Probability: Probability:  Microlensing : ~10 -6 events/yr/star Planetary event : ~10 -2 Planetary event : ~10 -2 Probability: Probability:  Microlensing : ~10 -6 events/yr/star Planetary event : ~10 -2 Planetary event : ~10 -2 G.C.G.C. SunSun Time scale ~ 30days (M  ) ~ a few days (M Jup ) ~ a few days (M Jup ) ~ hours (M  ) ~ hours (M  )  need high cadence

27 Observation towards the Bulge by MOA-II 50 deg. 2  60GB/night 1obs./hr (M Jup ) 1obs./10min. (M  ) 50 deg. 2  60GB/night 1obs./hr (M Jup ) 1obs./10min. (M  )  ~170events (2006)  ~500events (2007) http://www.massey.ac.nz/~iabond/alert/alert.html

28 Observational strategy (Han ) (Han & Kim, 2001) High magnification event we know when Low magnification event rate is higher we do not know when High magnification event we know when Low magnification event rate is higher we do not know when

29 Example light curves 〜50 obs/day 4days

30 Finite source effect ( MOA-2006-GLB- 130 ) Is= Is=21.07 mag

31 Real-time Anomaly check at Mt.John anomaly

32 The first planet via microlensing OGLE 2003-BLG-235/MOA 2003-BLG-53 OGLE 2003-BLG-235/MOA 2003-BLG-53 was detected by the OGLE EWS System on June 22, 2003 andOGLE EWS by the MOA group on July 21, 2003. MOA Mass : Jupiter Sep. : ~3AU

33 5.5 Earth mass Planet (Beaulieu et al. 2006, Nature,439,437) Sep~3AU The smallest Planet !

34 2nd & 3rd planets OGLE-2005-BLG-071. 1 M Jupiter, Udalski et al. 2005 OGLE-2005-BLG-169, 13M Earth, Gould et al.2006 “Cool Neptune" planets may be relatively common, with frequency of >16% at 90% confidence.

35 High mag events in 2007 t E =, A max > t E =6.24  0.15days, A max >400 OGLE-2007-BLG-224 (MOA-2007-BLG-163) MOA-2007-BLG-312 (OGLE-2007-BLG-388) t E =, A max = t E =3.50  0.65 days, A max =102 MOA-2007-BLG-397 ( OGLE-2007-BLG-538 ) t E =, A max = t E =21.34  0.03 days, A max =404 MOA-2007-BLG-400 t E =, A max >800 t E =14.64  0.2 days, A max >800 Same field as ob349/mb379 JD

36 MOA-2007-BLG-192 q=, sep= q=6x10^-5, sep=0.9R E, 1.1R E, MOAOGLE preliminary

37 MOA-2007-BLG-197 1年 1年 q=3, sep= q=3x10 -3, sep= 1R E Orange: PLANET (Danis) Blue : PLANET (Tasmania) Red :PLANET SAAO Brown : MOA preliminary

38 OGLE-2007-BLG-368 (MOA-2007-BLG-308) q=~ q=~1x10^-4 MOAOGLEPLANET(Danish)PLANET(Tasmania-I)PLANET(SAAO-I)PLANET(Brasil)  FUN(CTIO-I)

39 OGLE-2007-BLG-349 (MOA-2007-BLG-379) q=, sep= q=2.8x10^-4, sep= 0.8R E VLTHST Images are taken preliminary

40 Summary of Planet candidates preliminary. Credit Bennett Gould et al. 2006: “Cool Neptune" planets may be relatively common with frequency of >16% at 90% confidence.” Also consistent with formation theory. ( Ida & Lin, 2004)

41 Number of planets via Microlensing

42 Free floating planet candidates t E =1.2days preliminary

43 Free floating planet candidates t E =1.2days preliminary N model (t E <5) = 0.7(Scalo) N observ (t E <5) = 4 54 events in 1/3of all fields In 2006 preliminary Kamiya et al in preparation

44 Summary We are working hard to finish MOA-I MOA, OGLE, PLANET and μFUN found ~5 exoplanets candidates via microlensing in 2007. (in preparation) Consistent with Gould et al. 2006: “Cool Neptune planets may be relatively common” Planet event rate increasing to ~4 planets/yr by all microlensing community’s effort. MOA-II demonstrated the power of wide FOV high cadence survey.  OGLE-IV ( & new Korean telescopes )  Global Wide FOV network for 24hrs We are working hard to finish MOA-I MOA, OGLE, PLANET and μFUN found ~5 exoplanets candidates via microlensing in 2007. (in preparation) Consistent with Gould et al. 2006: “Cool Neptune planets may be relatively common” Planet event rate increasing to ~4 planets/yr by all microlensing community’s effort. MOA-II demonstrated the power of wide FOV high cadence survey.  OGLE-IV ( & new Korean telescopes )  Global Wide FOV network for 24hrs


Download ppt "MOA-II Microlensing Survey Takahiro Sumi (Nagoya University) the MOA collaboration Abe,F; Bennett,P.D;Bond, I. A.;Fukui,A;Furusawa,K; Hearnshaw, J. B.;Itow,Y;"

Similar presentations


Ads by Google