Download presentation
1
PHYSICO-CHEMICAL PROPERTIES OF MILK
2
Physical state Acidity & pH Density & specific gravity Colour Flavour Viscosity Surface tension Refractive index Specific heat Electrical conductivity Oxidation-reduction potential Boiling point Freezing point
3
Importance of properties
Helps in detection of adulteration. Helps in determining quality of milk. Helps in processing of milk & milk products. Helps in evaluating physical changes in milk & milk products during processing.
4
Physical state of milk In milk water is present as continuous phase in which other constituents are either dissolved or suspended. Lactose and Portion of mineral salts form Solution. Protein and Remainder of minerals form Colloida.l Fat forms Emulsion.
5
Acidity and pH of milk (a) Natural or apparent acidity (b) Developed acidity or real acidity Titratable acidity = DA 0.13 to 0.14 % Cow milk 0.14 to 0.15 % Buffalo milk Casein, acid phosphate, citrates, whey proteins, CO2 etc of milk givesNA Produced Lactic acid from Lactose by LAB gives- DA TA is measured in terms of present % Lactic acid pH of fresh milk 6.4 to Cow milk 6.7 to Buffalo milk
6
Density and specific gravity
D = Mass (Weight) / Volume SG is the ratio of density of the substance to density of a standard substance(Water). SG of milk is usually expressed at 600F(15.60C). Average SG of milk at 600F ranges from to for cow milk and to for buffalo milk. For skim milk it ranges from – 1.037 Specific gravity of milk is lowered by addition of water and cream and increased by addition of skim milk or removal of fat. Although buffalo milk contains more fat than cow milk, its specific gravity is higher than the cow milk; this is because buffalo milk contains more SNF with fat which results ultimately results in higher specific gravity. Percentage of TS or SNF in milk is calculated by formula % TS = 0.25D F +0.72 % SNF = 0.25D F +0.72 D = 100 (d-1) d= density of sample of milk at 200 C (680 F) F= fat percentage of sample
7
Color of milk Color of milk is a blend of individual effects produced by Colloidal calcium caseinate/phosphate particles and dispersed/emulsified fat globules, both of which scatter light. Carotene (to some extent xanthophylls), which imparts a yellowish color. Color ranges from yellowish creamy white (cow milk) to creamy white (buffalo milk). Intensity of yellow color of cow milk depends on various factors such as breed, feeds, size of fat globules, fat percentage etc. The greater intake of green feed, results in deeper yellow color of cow milk. Larger fat globules and higher fat percentage also results in increased intensity of yellow color. Upon heating whiteness increases due to increased reflection of light by coagulate. Skim milk has a bluish and whey a greenish yellow color (due to presence of riboflavin)
8
Flavor of milk Flavor is composed of small (odor) and taste. Flavor of milk is a blend of the sweet taste of lactose and salty taste of minerals. Phospholipids, fatty acids and fat of milk also contribute to the flavor. Changes in milk flavor may occur due to type of feed, season, stage of lactation, condition of udder, sanitation during milking and subsequent handling during processing. A pronounced flavor of any kind is considered abnormal, source of it may be · Bacterial growth · Feed · Absorbed · Chemical composition · Processing & handling · Chemical changes · Addition for foreign material
9
Viscosity Viscosity is the resistance to flow
Milk : 1.5 – 2.0 cp at 20 0 C Increase in temperature results in decrease in viscosity. Casein contributes more to viscosity than any other constituents.
10
Surface tension Surface tension affected by fat content i.e. addition of fat lower down ST. ST of water : 72 dynes /cm2 at 200 C Milk : 50 dynes /cm2 at 200 C Skim milk : 52 – 52.5 dynes /cm2 at 200 C
11
Refractive Index Refractive Index is the measure of change in direction of light beam in a medium. γ= Sin i/ Sin r For water ® 1.33 Milk ® to 1.348 RI is affected by protein, lactose & minerals, not by fat. Instrument ® Abbe – Refractometer
12
Specific Heat Helps in fabrication of equipment and calculating heat requirements to process milk. specific heat milk ® cal at 150 C
13
Electrical conductivity
Measured in terms of specific resistance or specific conductance. It depends on ions present in milk, mostly Na+ , K+, Cl- ions are responsible. Sp. conductivity = sp. conductance sp. resistance For milk (sp. conductance) ® 4.2 to 6.9
14
Oxi- Red potential Oxi - red potential concerned with the balance in between oxidized and reduced forms of the chemical substances. Milk ® to 0.3 ev Fat, sugar, protein-no affect on ORP Ascorbic acid, lactic acid ® influences ORP
15
Boiling point Boiling point increases with increase in TS
Pure water ® 1000C Milk ®
16
Freezing point Presence of soluble constituents lower or depress freezing point. For milk ® C to C Lactose & minerals affects FP. Fat & proteins have no effect on FP. Boiling & sterilization increase the value of FP depression but pasteurization has no effect.
17
Collegative properties
Properties, which depend on number of solute particles in solution i.e. FP, BP, ORP, VP.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.