Presentation is loading. Please wait.

Presentation is loading. Please wait.

Finite-Volumes II: Non Cartesian Sauro Succi. Finite Volumes Real-life geometries: coordinate-free Courtesy of Prof. M. Porfiri, NYU Poly.

Similar presentations


Presentation on theme: "Finite-Volumes II: Non Cartesian Sauro Succi. Finite Volumes Real-life geometries: coordinate-free Courtesy of Prof. M. Porfiri, NYU Poly."— Presentation transcript:

1 Finite-Volumes II: Non Cartesian Sauro Succi

2 Finite Volumes Real-life geometries: coordinate-free Courtesy of Prof. M. Porfiri, NYU Poly

3 Structured Non-Cartesian Geometrical data

4

5 Co/Contravariant/Cartesian

6

7

8 CEV = Centers/Edges/Vertices Non-cartesian: structured S W N Ε NΕ SΕ NW SW ne se C ew n s Non-orthogonal Still structured

9 Non-structured: diffusive flux Non-orthogonality: S W N Ε NΕ SΕ NW SW ne se C ew n s

10 CEV = Centers/Edges/Vertices Staggered S W N Ε NΕ SΕ NW SW ne se C ew n s Non-orthogonal

11

12 Navier-Stokes (Compressible) Staggered FV

13 NW NΕ SΕ SW n e w s P E N W S Vertex-centered staggered

14 Discretized Gauss: Continuity Discretized Convective Fluxes Same for north,west, south … Non-orthogonality issues (!) S W N Ε NΕ SΕ NW SW ne se C ew n s

15 Discretized Gauss: Continuity Discretized midpoint (2 nd order 8 neigh) Discretized Simpson (4 th order, 8 neigh)

16 Discretized Convective Fluxes

17 Discretized Gauss: Momentum_x Convective and Dissipative Fluxes

18 Non-Linear (outer) iteration Nonlinear (outer) iteration, k=0,1…

19 Real-life geometries Courtesy of Prof. M. Porfiri, NYU Poly

20 Example: Global: Cylindrical, Spherical, Local: Oblique

21 Unstructured FV~FEM

22 Reconstruction: Cell Centered

23 Mean square residual Minimize error functional:

24 Mean square residual

25 Exercise: Construct gradient on Regular cells Trapezoidal cells

26 Vertex control elements

27 Gradient computation: Gauss-Green

28 P E

29

30

31

32 Finite Volumes: summary Intuitive and physically sound Round-off Conservative (fluxin=-fluxout) Geo-topological ahead, laborious Interpolation to be decided (unlike FEM) Structured: Finite-Difference with non-smooth coordinates Unstructured: Close to FEM No-singularity (1/r for sherical coordinates) Commercially dominant (STAR-CD, FLUENT…)


Download ppt "Finite-Volumes II: Non Cartesian Sauro Succi. Finite Volumes Real-life geometries: coordinate-free Courtesy of Prof. M. Porfiri, NYU Poly."

Similar presentations


Ads by Google