Presentation is loading. Please wait.

Presentation is loading. Please wait.

Copyright © 2012 Wolters Kluwer Health | Lippincott Williams & Wilkins Chapter 17 Inferential Statistics.

Similar presentations


Presentation on theme: "Copyright © 2012 Wolters Kluwer Health | Lippincott Williams & Wilkins Chapter 17 Inferential Statistics."— Presentation transcript:

1 Copyright © 2012 Wolters Kluwer Health | Lippincott Williams & Wilkins Chapter 17 Inferential Statistics

2 Copyright © 2012 Wolters Kluwer Health | Lippincott Williams & Wilkins Question Tell whether the following statement is true or false: Inferential statistics are based on laws of probability.

3 Copyright © 2012 Wolters Kluwer Health | Lippincott Williams & Wilkins Answer True Inferential statistics, which are based on laws of probability, allow researchers to make inferences about a population based on data from a sample; they offer a framework for deciding whether the sampling error that results from sampling fluctuations is too high to provide reliable population estimates.

4 Copyright © 2012 Wolters Kluwer Health | Lippincott Williams & Wilkins Inferential Statistics A means of drawing conclusions about a population given data from a sample Based on laws of probability

5 Copyright © 2012 Wolters Kluwer Health | Lippincott Williams & Wilkins Sampling Distribution of the Mean A theoretical distribution of means for an infinite number of samples drawn from the same population Is always normally distributed Has a mean that equals the population mean Has a standard deviation (SD) called the standard error of the mean (SEM) SEM is estimated from a sample SD and the sample size

6 Copyright © 2012 Wolters Kluwer Health | Lippincott Williams & Wilkins Sampling Distribution

7 Copyright © 2012 Wolters Kluwer Health | Lippincott Williams & Wilkins Question Tell whether the following statement is true or false: Point estimation through statistical procedures enables researchers to make objective decisions about the validity of their hypotheses.

8 Copyright © 2012 Wolters Kluwer Health | Lippincott Williams & Wilkins Answer False Hypothesis testing through statistical procedures enables researchers to make objective decisions about the validity of their hypotheses. Point estimation provides a single descriptive value of the population estimate

9 Copyright © 2012 Wolters Kluwer Health | Lippincott Williams & Wilkins Statistical Inference—Two Forms Estimation of parameters Hypothesis testing (more common)

10 Copyright © 2012 Wolters Kluwer Health | Lippincott Williams & Wilkins Estimation of Parameters Used to estimate a single parameter Two forms of estimation: –Point estimation –Interval estimation

11 Copyright © 2012 Wolters Kluwer Health | Lippincott Williams & Wilkins Point Estimation Calculating a single statistic to estimate the population

12 Copyright © 2012 Wolters Kluwer Health | Lippincott Williams & Wilkins Interval Estimation Calculating a range of values within which the parameter has a specified probability of lying: –A confidence interval (CI) is constructed around the point estimate –The upper and lower limits are confidence limits

13 Copyright © 2012 Wolters Kluwer Health | Lippincott Williams & Wilkins Hypothesis Testing Based on rules of negative inference: research hypotheses are supported if null hypotheses can be rejected Involves statistical decision making to either: –Accept the null hypothesis, or –Reject the null hypothesis

14 Copyright © 2012 Wolters Kluwer Health | Lippincott Williams & Wilkins Hypothesis Testing (cont’d) Researchers compute a test statistic with their data, then determine whether the statistic falls beyond the critical region in the relevant theoretical distribution If the value of the test statistic indicates that the null hypothesis is “improbable,” the result is statistically significant A nonsignificant result means that any observed difference or relationship could have resulted from chance fluctuations

15 Copyright © 2012 Wolters Kluwer Health | Lippincott Williams & Wilkins Question Tell whether the following statement is true or false: Type II error occurs when a null hypothesis is incorrectly rejected (a false positive).

16 Copyright © 2012 Wolters Kluwer Health | Lippincott Williams & Wilkins Answer False A Type I error occurs when a null hypothesis is incorrectly rejected (a false positive). A Type II error occurs when a null hypothesis is wrongly accepted (a false negative).

17 Copyright © 2012 Wolters Kluwer Health | Lippincott Williams & Wilkins Statistical Decisions Are Either Correct or Incorrect Two types of incorrect decisions: Type I error: a null hypothesis is rejected when it should not be rejected –Risk of a Type I error is controlled by the level of significance (alpha), that is,  =.05 or.01. Type II error: failure to reject a null hypothesis when it should be rejected

18 Copyright © 2012 Wolters Kluwer Health | Lippincott Williams & Wilkins Hypotheses Testing Test statistic Critical region Statistically significant

19 Copyright © 2012 Wolters Kluwer Health | Lippincott Williams & Wilkins One-Tailed and Two-Tailed Tests Two-tailed tests Hypothesis testing in which both ends of the sampling distribution are used to define the region of improbable values One-tailed tests Critical region of improbable values is entirely in one tail of the distribution—the tail corresponding to the direction of the hypothesis

20 Copyright © 2012 Wolters Kluwer Health | Lippincott Williams & Wilkins Parametric Statistics Involve the estimation of a parameter Require measurements on at least an interval scale Involve several assumptions (e.g., that variables are normally distributed in the population)

21 Copyright © 2012 Wolters Kluwer Health | Lippincott Williams & Wilkins Nonparametric Statistics (Distribution- Free Statistics) Do not estimate parameters Involve variables measured on a nominal or ordinal scale Have less restrictive assumptions about the shape of the variables’ distribution than parametric tests

22 Copyright © 2012 Wolters Kluwer Health | Lippincott Williams & Wilkins Overview of Hypothesis-Testing Procedures Select an appropriate test statistic Establish the level of significance (e.g.,  =.05) Select a one-tailed or a two-tailed test Compute test statistic with actual data Calculate degrees of freedom (df) for the test statistic

23 Copyright © 2012 Wolters Kluwer Health | Lippincott Williams & Wilkins Overview of Hypothesis-Testing Procedures (cont’d) Obtain a tabled value for the statistical test Compare the test statistic to the tabled value Make decision to accept or reject null hypothesis

24 Copyright © 2012 Wolters Kluwer Health | Lippincott Williams & Wilkins Groups Independent groups compare separate groups of people Dependent groups compare the same group of people over time or conditions

25 Copyright © 2012 Wolters Kluwer Health | Lippincott Williams & Wilkins Commonly Used Bivariate Statistical Tests 1. t-Test 2. Analysis of variance (ANOVA) 3. Pearson’s r 4. Chi-square test

26 Copyright © 2012 Wolters Kluwer Health | Lippincott Williams & Wilkins t-Test Tests the difference between two means –t-Test for independent groups (between subjects) –t-Test for dependent groups (within subjects)

27 Copyright © 2012 Wolters Kluwer Health | Lippincott Williams & Wilkins Analysis of Variance (ANOVA) Tests the difference between 3+ means –One-way ANOVA –Multifactor (e.g., two-way) ANOVA –Repeated measures ANOVA (within subjects)

28 Copyright © 2012 Wolters Kluwer Health | Lippincott Williams & Wilkins Correlation Pearson’s r, a parametric test Tests that the relationship between two variables is not zero Used when measures are on an interval or ratio scale

29 Copyright © 2012 Wolters Kluwer Health | Lippincott Williams & Wilkins Chi-Square Test Tests the difference in proportions in categories within a contingency table A nonparametric test

30 Copyright © 2012 Wolters Kluwer Health | Lippincott Williams & Wilkins Power Analysis A method of reducing the risk of Type II errors and estimating their occurrence With power =.80, the risk of a Type II error () is 20% Method is frequently used to estimate how large a sample is needed to reliably test hypotheses

31 Copyright © 2012 Wolters Kluwer Health | Lippincott Williams & Wilkins Power Analysis (cont’d) Four components in a power analysis: 1.Significance criterion (α) 2.Sample size (N) 3.Population effect size—the magnitude of the relationship between research variables (γ) 4.Power—the probability of obtaining a significant result (1-β)


Download ppt "Copyright © 2012 Wolters Kluwer Health | Lippincott Williams & Wilkins Chapter 17 Inferential Statistics."

Similar presentations


Ads by Google