Presentation is loading. Please wait.

Presentation is loading. Please wait.

Cloud MapReduce: A MapReduce Implementation on top of a Cloud Operation System 9962161 江嘉福 100062228 徐光成 100062229 章博遠 2011, 11th IEEE/ACM International.

Similar presentations


Presentation on theme: "Cloud MapReduce: A MapReduce Implementation on top of a Cloud Operation System 9962161 江嘉福 100062228 徐光成 100062229 章博遠 2011, 11th IEEE/ACM International."— Presentation transcript:

1 Cloud MapReduce: A MapReduce Implementation on top of a Cloud Operation System 9962161 江嘉福 100062228 徐光成 100062229 章博遠 2011, 11th IEEE/ACM International Symposium on Huan Liu, Dan Orban Accenture Technology Labs 1

2 OUTLINE I. Introduction II. Cloud MapReduceArchitecture & Implementation III. Pros & Cons of Cloud MapReduce IV. Experimental Evaluation V. Conclusions & Future Works VI. References 2 9962161 江嘉福 100062228 徐光成 100062229 章博遠

3 INTRODUCTION 1. What is Cloud OS ? 2. Challenges posed by a cloud OS 3. Cloud MapReduce? 4. Advantages of Cloud MapReduce 3 9962161 江嘉福 100062228 徐光成 100062229 章博遠

4 What is Cloud OS ? 1.Managing the low level cloud resources 2.Presenting a high level interface to the application programmers 3.key difference : scalable 圖一 4 9962161 江嘉福 100062228 徐光成 100062229 章博遠

5 Challenges posed by a cloud OS 1.Scalability comes at a price. 2. Data consistency, system availability, and tolerance to network partition. 圖二 5 9962161 江嘉福 100062228 徐光成 100062229 章博遠

6 Cloud MapReduce? 1.MapReduce programming model 2.horizontal scaling 3.eventual consistency 4.overcome limitations 6 9962161 江嘉福 100062228 徐光成 100062229 章博遠

7 Advantages of Cloud MapReduce 1.Incremental scalability: Can scale incrementally in the number of computing nodes. 2.Symmetry and Decentralization: Node has the same set of responsibilities. 3.Heterogeneity: Nodes have varying computation capacity. 7 9962161 江嘉福 100062228 徐光成 100062229 章博遠

8 Cloud MapReduceArchitecture and Implementation 1.The architecture 2.Cloud challnenges 3.General solution approaches 8 9962161 江嘉福 100062228 徐光成 100062229 章博遠

9 The Architecture 9 9962161 江嘉福 100062228 徐光成 100062229 章博遠

10 Cloud challenges & General solution approaches 1.Long latency 2.Horizontal scaling 3.Don’t know when a queue is created for the first time 10 9962161 江嘉福 100062228 徐光成 100062229 章博遠

11 Con’t 4.Duplicate message 5.Potential node failure 6.Indeterminstic eventual consistency windows 11 9962161 江嘉福 100062228 徐光成 100062229 章博遠

12 Pros ● 3000 lines of Java code(L.O.C) vs 285375 Hadoop L.O.C ● Large & Reliable FS ● High Bandwidth(fast read/write) ● Single point of contact(high throughput) 12 9962161 江嘉福 100062228 徐光成 100062229 章博遠

13 Cons ● Uses only network(no local storage) ● Leads to bottleneck 13 9962161 江嘉福 100062228 徐光成 100062229 章博遠

14 Evaluation Almost twice as fast! 14 9962161 江嘉福 100062228 徐光成 100062229 章博遠

15 Evaluation ● Hadoop - 385s total, network/CPU under utilized ● CMR - 210s, more efficient network/CPU usage 15 9962161 江嘉福 100062228 徐光成 100062229 章博遠

16 Evaluation Wiki Word Count ● Combiner: Hadoop - 747s CMR - 436s ● No Combiner: Hadoop - 1733s CMR - 1247s 16 9962161 江嘉福 100062228 徐光成 100062229 章博遠

17 Evaluation Amazon ● Word Count -> 400GB using 100 nodes ● Approx. 1hr ● 983,152 Requests -> $0.98 ● Using SimpleDB? ● 3.7hrs -> $0.52 17 9962161 江嘉福 100062228 徐光成 100062229 章博遠

18 Evaluation Comparison ● Distributed Grep Word Count -> 13GB of data ● CMR = 962 seconds ● Hadoop 1047 seconds ● Results are almost the same, why? ● More CPU intensive tasks 18 9962161 江嘉福 100062228 徐光成 100062229 章博遠

19 Evaluation 12GB - 923670 HTML files ● Hadoop -> 6hrs+ ● CMR -> 297 seconds ● Hadoop - High overhead from task creation 19 9962161 江嘉福 100062228 徐光成 100062229 章博遠

20 Conclusion ● Cloud cannot be implemented on any system ● Poor Performance ● CMR techniques overcome cloud limitations ● 0 Performance Degradation ● Good to use for other systems 20 9962161 江嘉福 100062228 徐光成 100062229 章博遠

21 REFERENCES 圖一: http://techcrunch.com/ http://techcrunch.com/ 圖二: http://blog.csdn.net/zouqingfang/article/details/7269920 http://blog.csdn.net/zouqingfang/article/details/7269920 http://zh.wikipedia.org/ https://code.google.com/p/cloudmapreduce/ http://searchcloudcomputing.techtarget.com/definition/MapReduce http://myblog-maurice.blogspot.tw/2012/08/nosqlcap.html 21 9962161 江嘉福 100062228 徐光成 100062229 章博遠


Download ppt "Cloud MapReduce: A MapReduce Implementation on top of a Cloud Operation System 9962161 江嘉福 100062228 徐光成 100062229 章博遠 2011, 11th IEEE/ACM International."

Similar presentations


Ads by Google