Download presentation
Presentation is loading. Please wait.
Published byTimothy Newton Modified over 9 years ago
1
Henrik Johansson CERN March 26, 2013 BUDS workshop INFN Frascati Henrik Johansson CERN March 26, 2013 BUDS workshop INFN Frascati 1201.5366, 1207.6666, 1210.7709 Based on work with: Zvi Bern, John Joseph Carrasco, Lance Dixon, Michael Douglas, Radu Roiban, Matt von Hippel Towards Determining the UV Behavior of Maximal Supergravity
2
H. Johansson, Frascati 2013 SUGRA status in one slide After 35 years of supergravity, we can only now make very precise statements about the D=4 ultraviolet structure. No D=4 divergence of pure SG has been found to date. Susy forbids 1,2 loop div., R 2, R 3 c.t. incompatible with susy Pure gravity 1-loop finite, 2-loop divergent Goroff & Sagnotti With matter: 1-loop divergent ‘t Hooft & Veltman Naively susy allows 3-loop div. R 4 N =8 SG and N =4 SG 3-loop finite! N =8 SG: no divergence before 7 loops 7-loop div. in D=4 implies a 5-loop div. in D=24/5 -- calculation in progress! UFinite? N=8 SG
3
H. Johansson, Frascati 2013 Why is it interesting ? If N =8 SG is perturbatively finite, why is it interesting ? It better be finite for a good reason! Hidden new symmetry, for example Understanding the mechanism might open a host of possibilities Any indication of hidden structures yet? Gravity is a double copy of gauge theories Color-Kinematics: kinematics = Lie algebra Constraints from E-M duality Kallosh,…. Hidden superconformal N=4 SUGRA ? Symmetry? Gravity Bern, Carrasco, HJ Ferrara, Kallosh, Van Proeyen
4
Henrik Johansson Gauge Theory Analogy Gauge theory in D>4 have same problem as D=4 gravity Non-renormalizable due to dimensionful coupling However, D=5 SYM has a UV completion: (2,0) theory in D=6 Is D=5 SYM perturbatively UV finite ? Douglas; Lambert et al. If yes, how does it work ? If no, what do we need to add ? Solitons, KK modes ? Douglas; Lambert et al. Understanding D=5 SYM might (or might not) give clues to how to understand D=4 gravity. (2,0) theory ? D=5 SYM
5
H. Johansson, Frascati 2013 Review UV status N=8 SUGRA and N=4 SYM 4pt amplitudes and UV divergences 3,4-loop N=8 SUGRA & N=4 SYM 5-loop nonplanar SYM 6-loop planar D=5 SYM 5pt amplitudes and UV divergences 1,2,3-loop N=8 SUGRA & N=4 SYM Current 5-loop progress Conclusion Outline
6
H. Johansson, Frascati 2013 UV properties N =8 SG N =8 SG: conventional superspace power counting forbids L=1,2 divergences Deser, Kay, Stelle; Howe and Lindström; Green, Schwarz, Brink; Howe, Stelle; Marcus, Sagnotti Three-loop divergence ruled out by calculation: Bern, Carrasco, Dixon, HJ, Kosower, Roiban, (2007), Bern, Carrasco, Dixon, HJ, Roiban (2008 ) L<7 loop divergences ruled out by counterterm analysis, using E 7(7) symmetry and other methods, but a L=7 divergence is still possible Beisert, Elvang, Freedman, Kiermaier, Morales, Stieberger; Björnsson, Green, Bossard, Howe, Stelle, Vanhove, Kallosh, Ramond, Lindström, Berkovits, Grisaru, Siegel, Russo, and more…. In D=4 dimensions: In D>4 dimensions: Through four loops N =8 SG and N =4 SYM diverge in exactly the same dimension: Marcus and Sagnotti; Bern, Dixon, Dunbar, Perelstein, Rozowsky; Bern, Carrasco, Dixon, HJ, Kosower, Roiban
7
H. Johansson, Frascati 2013 UV divergence trend Plot of critical dimensions of N = 8 SUGRA and N = 4 SYM Known bound for N = 4 Bern, Dixon, Dunbar, Rozowsky, Perelstein; Howe, Stelle current trend for N = 8 If N = 8 div. at L=7 calculations: L = 7 lowest loop order for possible D = 4 divergence Beisert, Elvang, Freedman, Kiermaier, Morales, Stieberger; Björnsson, Green, Bossard, Howe, Stelle, Vanhove Kallosh, Ramond, Lindström, Berkovits, Grisaru, Siegel, Russo, and more…. 1-2 loops: Green, Schwarz, Brink; Marcus and Sagnotti 3-5 loops: Bern, Carrasco, Dixon, HJ, Kosower, Roiban 6 loops: Bern, Carrasco, Dixon, Douglas, HJ, von Hippel Finite ? Divergent
8
H. Johansson, Frascati 2013 UV divergence trend Plot of critical dimensions of N = 8 SUGRA and N = 4 SYM Known bound for N = 4 Bern, Dixon, Dunbar, Rozowsky, Perelstein; Howe, Stelle current trend for N = 8 If N = 8 div. at L=7 calculations: L = 7 lowest loop order for possible D = 4 divergence Beisert, Elvang, Freedman, Kiermaier, Morales, Stieberger; Björnsson, Green, Bossard, Howe, Stelle, Vanhove Kallosh, Ramond, Lindström, Berkovits, Grisaru, Siegel, Russo, and more…. 1-2 loops: Green, Schwarz, Brink; Marcus and Sagnotti 3-5 loops: Bern, Carrasco, Dixon, HJ, Kosower, Roiban 6 loops: Bern, Carrasco, Dixon, Douglas, HJ, von Hippel 26/5 or 24/5 ? Finite ? Divergent
9
H. Johansson, Frascati 2013 N =8 Amplitude and Counter Term Structure 4pt amplitude form (any dimension) divergence occurs in Counter term D = 8 D = 6 D = 7 D = 5.5 Loop order 1 2 3 4 If amplitude for L 4 has at least 8 derivatives then by dimensional analysis: no divergence before L = 7 ! D = 24/5 ? 5 ? ?
10
H. Johansson, Frascati 2013 N =8 Amplitude and Counter Term Structure 4pt amplitude form (any dimension) divergence occurs in Counter term D = 8 D = 6 D = 7 D = 5.5 Loop order 1 2 3 4 If amplitude for L 5 has at least 10 derivatives then by dimensional analysis: no divergence before L = 8 ! D = 26/5 ? 5 ? ?
11
H. Johansson, Frascati 2013 Earliest appearance of N = 8 Divergence 3 loops Conventional superspace power counting Green, Schwarz, Brink (1982) Howe and Stelle (1989) Marcus and Sagnotti (1985) 5 loops Partial analysis of unitarity cuts; If N = 6 harmonic superspace exists; algebraic renormalisation Bern, Dixon, Dunbar, Perelstein, Rozowsky (1998) Howe and Stelle (2003,2009) 6 loops If N = 7 harmonic superspace exists Howe and Stelle (2003) 7 loops If N = 8 harmonic superspace exists; string theory U-duality analysis; lightcone gauge locality arguments; E 7(7) analysis, unique 1/8 BPS candidate Grisaru and Siegel (1982); Green, Russo, Vanhove; Kallosh; Beisert, Elvang, Freedman, Kiermaier, Morales, Stieberger; Bossard, Howe, Stelle, Vanhove 8 loops Explicit identification of potential susy invariant counterterm with full non-linear susy Howe and Lindström; Kallosh (1981) 9 loops Assume Berkovits’ superstring non-renormalization theorems can be carried over to N = 8 supergravity Green, Russo, Vanhove (2006) Finite Identified cancellations in multiloop amplitudes; lightcone gauge locality and E 7(7), inherited from hidden N=4 SC gravity Bern, Dixon, Roiban (2006), Kallosh (2009–12), Ferrara, Kallosh, Van Proeyen (2012)
12
H. Johansson, Frascati 2013 3, 4, 5, 6-Loop Amplitudes
13
3-loop N =8 SG & N =4 SYM Color-kinematics dual form: Bern, Carrasco, HJ UV divergent in D=6: Bern, Carrasco, Dixon, HJ, Roiban
14
4-loops: 85 integral types
15
H. Johansson, QMUL 201315 4-loops N =4 SYM and N =8 SG Bern, Carrasco, Dixon, HJ, Roiban 1201.5366 85 diagrams Power counting manifest both N =4 and N =8 Both diverge in D=11/2 up to overall factor, divergence same as for N =4 SYM part
16
H. Johansson, Frascati 2013 N =4 SYM 5-loop Amplitude N =4 SYM important stepping stone to N =8 SG 1207.6666 [hep-th] Bern, Carrasco, HJ, Roiban 416 integral topologies: Used maximal cut method Bern, Carrasco, HJ, Kosower Maximal cuts: 410 Next-to-MC: 2473 N 2 MC: 7917 N 3 MC: 15156 Unitarity cuts done in D dimensions...integrated UV div. in D=26/5
17
H. Johansson, Frascati 2013 N =4 SYM 5-loop UV divergence Non-Planar UV divergence in D=26/5: Double traces and single-trace NNLC finite in D=26/5, only single-trace LC and NLC are divergent Vanish! Bern, Carrasco, HJ, Roiban
18
H. Johansson, Frascati 2013 Testing D=5 intercept Plot of critical dimensions of N = 8 SUGRA and N = 4 SYM Known bound for N = 4 Bern, Dixon, Dunbar, Rozowsky, Perelstein; Howe, Stelle current trend for N = 8 If N = 8 div. at L=7 calculations: L = 7 lowest loop order for possible D = 4 divergence Beisert, Elvang, Freedman, Kiermaier, Morales, Stieberger; Björnsson, Green, Bossard, Howe, Stelle, Vanhove Kallosh, Ramond, Lindström, Berkovits, Grisaru, Siegel, Russo, and more…. 1-2 loops: Green, Schwarz, Brink; Marcus and Sagnotti 3-5 loops: Bern, Carrasco, Dixon, HJ, Kosower, Roiban 6 loops: Bern, Carrasco, Dixon, Douglas, HJ, von Hippel
19
H. Johansson, Frascati 2013 6-Loop Planar D=5 SYM 68 planar diagrams Given by dual conformal invariance (up to integer 0,1,-1,2,-2... prefactors) Independently constructed by: Eden, Heslop, Korchemsky, Sokatchev; Bourjaily, DiRe, Shaikh, Spradlin, Volovich Bern, Carrasco, Dixon, Douglas, HJ, von Hippel
20
6-Loop Planar D=5 SYM The Parking Spot Escalation our secret collaborator…
21
6-Loop D=5 SYM divergence Using integration by parts identities, div. simplifies to 3 integrals Numerical integration – modified version of FIESTA 1000 node cluster at Stony Brook Result: divergence is nonzero. What cancels this divergence ? Solitons/KK modes ? Douglas; Lambert et al. Bern, Carrasco, Dixon, Douglas, HJ, von Hippel
22
Divergence to all loop orders ? Bern, Carrasco, Dixon, Douglas, HJ, von Hippel Intriguing pattern of UV divergence in critical dimension of maximal susy YM Accurate to <1% Why do the UV divergences follow this approximate curve? Is it asymptotically exact ?
23
H. Johansson, Frascati 2013 5pt N=8 SUGRA calculations
24
H. Johansson, Frascati 2013 C-K amplitudes at 1 loop 2 41 3 Green, Schwarz, Brink (1982) Duality-satisfying loop amplitudes: 2 41 3 N=4 SYM: All-plus QCD: N=4 SYM and All-plus QCD: 1106.4711 [hep-th] Carrasco, HJ
25
SYM UV div in D=8: Carrasco, HJ 1106.4711 [hep-th] SU(8) violating SG UV div in D=8: SG UV div in D=8: 1-loop 5-pts UV divergences counterterms:
26
H. Johansson, Frascati 2013 2-loop 5-pts N =4 SYM and N =8 SG The 2-loop 5-point amplitude with Color-Kin. duality N = 8 SG obtained from numerator double copies Carrasco, HJ 1106.4711 [hep-th]
27
2-loop 5-pts UV divergences SYM UV div in D=7: SG UV div in D=7: Carrasco, HJ 1106.4711 [hep-th] SU(8) violating SG UV div in D=8:
28
H. Johansson, Frascati 2013 3-loop 5-point SYM and N =8 SG ( “ ladder-like ” diagrams) Carrasco, HJ (to appear) Non-planar D-dimensional amplitude with manifest color-kinematics duality ( N = 8 SG obtained from squaring the numerators)
29
H. Johansson, Frascati 2013 3-loop 5-point SYM and N =8 SG some “ Mercedes-like ” diagrams … Carrasco, HJ (to appear)
30
H. Johansson, Frascati 2013 3-loop 5-point SYM and N =8 SG Carrasco, HJ (to appear) … in total 42 diagrams. For SYM the UV divergent diagrams (in D=6) are very simple: (for SG the UV div. comes from the other diagrams as well)
31
H. Johansson, Frascati 2013 3-loop 5-pts UV divergences
32
N =8 SG 5-loop Status Working on reorganizing 5-loop N =4 SYM Bern, Carrasco, HJ, Roiban (in progress) 416 + 336 = 752 integral topologies BCJ: 2500 functional Jacobi eqns Relaxing ansatz: Non-manifest crossing symmetry Allow for non-local numerators Gauge variant numerators Relax power counting Allow for triangle diagrams … Once we have integrand, integration will take ~ 1 day: No subdivergences in D=24/5 No IR divergences since D>4, and absence of bubbles No more difficult than IBP:s for N =4 SYM < 1 day If needed, numerical integration ~ few days
33
SYM SG ? 3 loops, D=6: 4 loops, D=11/2: SYM SG H. Johansson, Frascati 2013 Fortune-telling from pattern 5 loops, D=26/5: related to diagrams in the quartic Casimir
34
Summary Explicit calculations in N = 8 SUGRA up to four loops show that the power counting exactly follows that of N = 4 SYM -- a finite theory 5 loop calculation in D=24/5 probes the potential 7-loop D=4 counterterm -- will provide critical input to the N = 8 question ! D=5 SYM have a 6-loop UV divergence, showing that the standard perturbative expansion misses some of the (2,0) theory contributions. Color-Kinematics duality allows for gravity calculations for multiloop multipoint amplitudes -- greatly facilitating UV analysis in gravity. Numbers in UV divergences of N =8 SUGRA and N =4 SYM coincide, suggesting a deeper connection between the theories Stay tuned for the 5-loop SUGRA result…
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.