Presentation is loading. Please wait.

Presentation is loading. Please wait.

Slide No. 1 Improved Pen Alignment for Bidirectional Printing* Edgar Bernal Prof. Jan P. Allebach Prof. Zygmunt Pizlo Purdue University * Research supported.

Similar presentations


Presentation on theme: "Slide No. 1 Improved Pen Alignment for Bidirectional Printing* Edgar Bernal Prof. Jan P. Allebach Prof. Zygmunt Pizlo Purdue University * Research supported."— Presentation transcript:

1 Slide No. 1 Improved Pen Alignment for Bidirectional Printing* Edgar Bernal Prof. Jan P. Allebach Prof. Zygmunt Pizlo Purdue University * Research supported by the Hewlett-Packard Company.

2 Slide No. 2 Outline Motivation: why is accurate pen alignment important? Proposed approach 1.Imaging analysis tools 2.Psychophysical experiments Discussion

3 Slide No. 3 Operation of an inkjet printer A carriage transports the pen back and forth across the page. The pen fires ink onto the surface of the page. Paper is advanced through the printer by a series of rollers driven by a stepper motor.

4 Slide No. 4 Motivation Main focus is on draft print modes (fast, single pass, bidirectional). Accurate swath-to-swath alignment is essential for good print quality.

5 Slide No. 5 The problem Typical dot shape, 15 ips, right to left swath Typical dot shape, 45 ips, right to left swath Typical dot shape, 45 ips, left to right swath Dot shape depends on print speed and print directionality. How does the human viewer perceive dot position when dot shape is asymmetric? How does the human viewer perceive alignment when relationship between main dot/satellite is reversed from swath to swath? Tails and satellites appear more frequently at higher speeds

6 Slide No. 6 Background on perception of misalignment: Vernier acuity Vernier acuity, the ability to detect offset between two vertical or horizontal lines, is in the order of 10 seconds of arc* (≈10×10 -4 in @ 10 in viewing distance). Want to determine whether Vernier acuity is affected by changes in dot shape and size. Retinal image size is measured by the angle subtended by the object. ______________________ * Regan, David. Human Perception of Objects. 2000.

7 Slide No. 7 Outline Proposed approach: measuring misalignment and classifying dots. Psychophysical tests: constant stimuli and signal detection. Discussion of results.

8 Slide No. 8 Proposed approach Design tools to measure alignment of printouts. Analyze the structure of dot formation on the paper. Investigate perceptual preferences with respect to dot alignment and dot characteristics.

9 Slide No. 9 Scanner calibration

10 Slide No. 10 Measuring misalignment 1. Print test pattern (square grid of 30x30 dots surrounded by a solid black region) on the HP DeskJet 6540 inkjet printer. Place upper and lower halves of pattern on different swaths. 2. Scan printed pattern with the Aztek 8000 drum scanner at 8000 dpi. 3. Binarize image and find boundaries between rows and colums. 4. Find centroid of each dot by averaging absorptance distribution inside dot’s cell. 5. Misalignment is estimated by calculating offset between average horizontal position of dots in upper half and average horizontal position of dots in lower half of pattern. 1 234

11 Slide No. 11 Isolating the effects of image skew Estimate skew of scanned pattern by performing orthogonal regression along rows of dots and finding slope of line. Update vertical references by performing regression along columns. Misalignment is calculated by measuring perpendicular distances between dots and new column references to get rid of effect of skew.

12 Slide No. 12 Dot analysis tool Most of the times, single dots are rendered as two dots when printing at 300 dpi with a pen with 600 dpi resolution. As print speed increases, tails and satellites appear more frequently. Double dotTails and satellitesSingle dot

13 Slide No. 13 Classification into single and double by principal component analysis 1. Pick set of training dot image samples  1,  2, …,  M whose class is known 2. Find average image 3. Find covariance matrix 4. The k eigenvectors v i, …, v k corresponding to the k largest eigenvalues of C are the basis of the “feature space” 5. Any dot image can be approximated as, where 6. Let  i =[  1...  k ] T be the set of coefficients of the i-th training sample,  i. The class to which a new dot  belongs, is the class corresponding to the  i that minimizes ||  -  i ||

14 Slide No. 14 Dot Classification - Results

15 Slide No. 15 Dot bisection Objective is to find a curve that bisects the dot image along the path of lowest image absorptance: find curve v(s) that minimizes where E image is the absorptance value.

16 Slide No. 16 Ellipse fitting Fit ellipse to points belonging to dot outline via least squares. Equation of the ellipse is F(x,y)=ax 2 +bxy+cy 2 +dx+cy+f=0 subject to b 2 - 4ac<0. Fitting set of points (x i,y i ) equivalent to minimizing subject to b 2 -4ac=-1. Ellipse shape helps estimate dot elongation and orientation. Grayscale dot Binary dotDot outline and fitted ellipse

17 Slide No. 17 Tail detection Similar procedure to dot bisection, except that the initial guess corresponds to segment of minimum average energy in the direction perpendicular to main axis of fitted ellipse.

18 Slide No. 18 Sample output of dot analysis tool Output contains information such as: dot type, ellipse coefficients, location of contour components, location of centroid of main dot and satellites, etc. Tool was used to characterize and classify different pens according to the characteristics of the dots they produced.

19 Slide No. 19 Effect of print speed on dot aspect ratio and on fraction of dots with a tail

20 Slide No. 20 Dot attributes across a population of pens The attributes of the printed dot are similar throughout the population of pens.

21 Slide No. 21 Outline Proposed approach: measuring misalignment and classifying dots. Psychophysical tests: constant stimuli and signal detection. Discussion of results.

22 Slide No. 22 Psychophysical tests (asymmetric Constant Stimuli) Show subject test images printed with different levels of misalignment. Record subject’s responses to make inferences about perception of misalignment.

23 Slide No. 23 Psychometric curves for 15 and 30 ips Results for these print modes suggest that point of perceived perfect alignment coincides with point of measured perfect alignment.

24 Slide No. 24 Data points for 45 and 60 ips Results for these print modes suggest that point of perceived perfect alignment differs from point of measured perfect alignment.

25 Slide No. 25 Psychophysical tests (symmetric Constant Stimuli)

26 Slide No. 26 Point of perceived perfect alignment for 45 and 60 ips New constant stimuli test was carried out to estimate the point of perceived perfect alignment for 45 and 60 ips bidirectional. Subjects were asked to respond whether lower segment of a line was shifted to the left or to the right with respect to upper segment. PSE is an estimate of the point of perceived perfect alignment.

27 Slide No. 27 Corrected psychometric curves for 45 and 60 ips

28 Slide No. 28 Outline Proposed approach: measuring misalignment and classifying dots. Psychophysical tests: constant stimuli and signal detection. Discussion of results.

29 Slide No. 29 Line profiles for misalignment magnitude equal to PSE Swath break

30 Slide No. 30 Illustration of dot interaction on inter-swath juncture

31 Slide No. 31 Signal detection experiments Want to measure ability to distinguish between two different alignment values for each print speed. Printed 40 test pages at each carriage speed. Half of those pages were printed with a higher misalignment value than the other half. Each subject was presented with the test pages and was asked to classify each of them into one of two groups. The resulting data was tabulated in a stimulus response matrix:  is estimated as a function of the Hit and False Alarm fractions, and of the magnitude of the difference of the two alignment values*. YesNo Large HitsMisses Small False Alarms Correct Rejections _________________ * For details, see Detection Theory by Macmillan and Creelman.

32 Slide No. 32 Estimated  vs. print speed

33 Slide No. 33 Conclusions Designed a comprehensive set of image analysis tools to study formation of dots on paper. Demonstrated that dot characteristics remain more or less constant across a wide population of pens. Alignment judgments are based on dot outline (at a certain absorptance level) rather than center of mass. Additional tests showed that sensitivity to changes in alignment decreases as print speed increases. Estimated thresholds for perception of alignment are in the order of the Vernier acuity (5-10 seconds of arc).


Download ppt "Slide No. 1 Improved Pen Alignment for Bidirectional Printing* Edgar Bernal Prof. Jan P. Allebach Prof. Zygmunt Pizlo Purdue University * Research supported."

Similar presentations


Ads by Google