Download presentation
Published byBarnard Cooper Modified over 9 years ago
1
National Conference on Virtual and Intelligent Instrumentation (NCVII -09),
BITS Pilani, Nov. 2009 ______________________________________________________________ A High Sensitivity Bioimpedance Detector B. B. Patil P. C. Pandey V. K. Pandey S. M. M. Naidu IIT Bombay
2
Presentation Outline Introduction Bioimpedance Detector Circuit
Test Results Conclusion
3
Introduction Bioimpedance Detector Circuit Test Results Conclusion
4
Sensing of the Variation in the Bioimpedance
Introduction (1/4) Sensing of the Variation in the Bioimpedance Noninvasive technique for monitoring ♦ changes in the fluid volume ♦ underlying physiological events Impedance Cardiography A noninvasive technique for monitoring stroke volume and obtaining diagnostic information on cardiovascular functioning by sensing the variation in the thoracic impedance during the cardiac cycle. Sensing of the Thoracic Impedance A current ( 20 kHz – 1MHz, <5mA) passed through a pair of surface electrodes and the resulting amplitude modulated voltage sensed using the same or another pair of electrodes.
5
Introduction (2/4) ICG Instrumentation
6
Introduction (3/4) Bioimpedance Detection ♦ Detection of extremely low modulation index ( 0.2 – 2 %) ♦ External noise suppression ♦ Carrier ripple rejection AM Detector Ckts ♦ Peak detector ♦ Precision rectifier det. ♦ Synchronous det. ♦ Slicing amplifier det. (Fourcin, 1979): high sensit., increased ripple ♦ Synchronous S/H at carrier peak: very low ripple
7
Introduction (4/4) Proposed Technique Features ♦ High sensitivity ♦ Carrier ripple suppression without filtering ♦ Noise reduction Realization ♦ Slicing amplifier with sampling at the peaks of the sinusoidal excitation : high sensitivity, low ripple ♦ Summation of the signals obtained by sampling the +ve & -ve peaks : external noise reduction
8
Bioimpedance Detector Circuit
Introduction Bioimpedance Detector Circuit Test Results Conclusion
9
Bioimpedance Detector Ckt (1/6)
Demodulation ♦ Two channels of slicing amplifier with synch. S/H at the +ve and –ve peaks of the excitation ♦ Addition of the two outputs: suppression of noise & low freq. drift Slicing Amplifier ♦ Realized using voltage clamp amplifier IC AD8037 (Greater of the V+ & VL inputs connected as the non-inverting input) ♦ Ckt config. and resistors selection: ♦ V+ > VL : Output diff. i/p ♦ V+ < VL : Zero output Sample-and-hold (IC HA5351) Sampled near the excitation peak & held for ripple suppression
10
Demodulator using Slicing Amplifier & S/H
Bioimpedance Detector Ckt (2/6) Demodulator using Slicing Amplifier & S/H IC3 : AD8037 voltage clamp amp., IC4: HA5351 S/H
11
Slicing Amplifier Waveforms Bioimpedance Detector Ckt (3/6)
Vo1: slicing amp o/p Vo2: S/H o/p
12
Bioimpedance Detector
Bioimpedance Detector Ckt (4/6) Bioimpedance Detector AM demod. of the sensed voltage using two channels of slicing amplifier with sync. S/H
13
Sinusoidal Excitation & S/H Pulse Generation
Bioimpedance Detector Ckt (5/6) Sinusoidal Excitation & S/H Pulse Generation Two direct digital synthesizer (DDS) chips (AD 9834) ♦ DDS-1: Sinusoidal o/p for current excitation ♦ DDS-2: Square o/p with settable phase shift for S/H pulses Circuit Features Microcontroller based digital control of ♦ Excitation current level using a digital pot. ♦ Excitation frequency ♦ Slicing amplifier ref. level, using a digital pot. ♦ Phase shift between the two DDS outputs for precise alignment of hold edge of S/H pulses to the +ve and –ve peaks of the excitation
14
Detector Ckt Waveforms
Bioimpedance Detector Ckt (6/6) Detector Ckt Waveforms Vs: DDS-1 o/p (exc.) VΦ: DDS-2 o/p (phase shifted w.r.t. Vs) V3 & V4: slicing amp. Outputs V5 & V6: S/H outputs VSH1 & VSH2: sampling pulses
15
Introduction Bioimpedance Detector Circuit Test Results Conclusion
16
Impedance Detector Performance Parameters
Test results (1/5) Impedance Detector Performance Parameters ♦ Range of basal resistance ♦ Sensitivity (ΔVo / ΔR) ♦ Frequency response Thorax Simulator for Testing the Bioimpedance Detector ♦ Basal resistance (settable: 20 200 ) ♦ Periodic resistance variation (settable: 0.1 1.2 %) ♦ µC & digital pot.: settable ΔR, F, waveshape
17
Thorax Simulator Ckt Test results (2/5) I1 & I2: current injection
E1 & E2: voltage sensing ♦ Variation in the thorax impedance ♦ DM & CM voltages (ECG) ♦ Sync. output
18
Microcontroller and Power Supply Ckt of the Thorax Simulator
Test results (3/5) Microcontroller and Power Supply Ckt of the Thorax Simulator
19
Testing Using the Thorax Simulator
Test results (4/5) Testing Using the Thorax Simulator ♦ Excitation: 1 mA rms, 100 kHz ♦ Thorax Simulator F: Hz Ro = 196 ΔR / Ro = 0.1 to 1.2%
20
Sync. & Det. Output Waveforms Test results (5/5) F = 8 Hz, Ro = 196 .
(b) (c) (d) Vo Sync. & Det. Output Waveforms F = 8 Hz, Ro = 196 . Resistance variation ΔR / Ro: 1.2 % sinusoidal 0.6 % sinusoidal 1.2 % square 0.6 % square Time scale: 40 ms/div, Ch1: 5 V/div, Ch2: 500 mV/div.
21
Introduction Bioimpedance Detector Circuit Test Results Conclusion
22
A bioimpedance detector for ICG instrumentation
Conclusion (1/1) A bioimpedance detector for ICG instrumentation ♦ Slicing amplifier for AM demod. with mod. index < 2% ♦ Sync. sampling for ripple rejection without lowpass filtering the output ♦ Digital control of ▫ Exc. parameters (Frequency, current level) ▫ Demod. parameters (Slicing amp. ref., Φ-shift for sync. S/H) Ckt operation verified using a thorax simulator for detecting ΔR / Ro well below 2%, sinusoidal & square wave variations with freq. of Hz.
23
THANK YOU
24
B. B. Patil, P. C. Pandey, V. K. Pandey, and S. M. M
B. B. Patil, P. C. Pandey, V. K. Pandey, and S. M. M. Naidu, “A high sensitivity bioimpedance detector”, Proc. National Conference on Virtual and Intelligent Instrumentation (NCVII-09), BITS Pilani, Nov Abstract: A bioimpedance detector is developed as part of instrumentation for impedance cardiography. It uses slicing amplifier for increasing the sensitivity for the impedance variation and synchronous sampling for a ripple-free output. The circuit provides digital control of excitation current and frequency used for the measurement. Its operation has been verified using a thorax simulator for detecting the impedance variations well below 2%. Prof. P. C. Pandey Address: EE Dept. / IIT Bombay / Powai Mumbai / India / pcpandey [at] iitb.ac.in
25
References J. Nyboer, Electrical Impedance Plethysmography. 2nd ed., Springfield, Massachusetts: Charles C. Thomas, 1970. L. E. Baker, "Principles of impedance technique", IEEE Eng. Med. Biol. Mag., vol. 8, pp , 1989. M. Min, T. Parve, A. Ronk, P. Annus, and T. Paavle, "Synchronous sampling and demodulation in an instrument for multifrequency bioimpedance measurement", IEEE Trans. Inst. Measurements, vol. 56, pp , 2007. W. G. Kubicek, F. J. Kottke, and M. U. Ramos, "The Minnesota impedance cardiograph – theory and applications", Biomed. Eng., vol. 9, pp , 1974. M. Qu, Y. Zhang, J. G. Webster, and W. J. Tompkins, "Motion artifact from spot and band electrodes during impedance cardiography", IEEE Trans. Biomed. Eng., vol. 33, pp , 1986. J. Fortin, W. Habenbacher, and A. Heller, "Non-invasive beat-to-beat cardiac output monitoring by an improved method of transthoracic bioimpedance measurement", Comp. Bio. Med., vol. 36, pp , 2006. J. N. Sarvaiya, P. C. Pandey, and V. K. Pandey, “An impedance detector for glottography”, IETE J. Research, vol 55, no. 3, pp , 2009. A. J. Fourcin, "Apparatus for speech pattern derivation", U. S. Patent No. 4,139,732, Feb. 13, 1979. B. B. Patil, "Instrumentation for impedance cardiography", M.Tech. Dissertation, Biomedical Engineering, Indian Institute of Technology Bombay, 2009. V. K. Pandey, P. C. Pandey, and J. N. Sarvaiya, "Impedance simulator for testing of instruments for bioimpedance sensing", IETE J. Research, vol. 54, no. 3, pp , 2008. B. B. Patil, V. K. Pandey, and P. C. Pandey, "A microcontroller based thorax simulator for testing and calibration of impedance cardiographs", in Proc. Int. Symp. Emerging Areas in Biotechnology & Bioengineering (ISEABB), Mumbai, India, 2009, pp
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.