Download presentation
Presentation is loading. Please wait.
1
Frequency Tables, Line Plots, and Histograms
PRE-ALGEBRA LESSON 12-1 Formulate a set of five different numbers whose median is 95 and whose mean is 100. 90, 92, 95, 110, 113 Sample answer 12-1
2
Frequency Tables, Line Plots, and Histograms
PRE-ALGEBRA LESSON 12-1 (For help, go to Lesson 3-3.) Find the median and mode of each data set. 1. 6, 9, 9, 5, , 78, 77, 73, 79 3. 300, 100, 200, 150, , 5, 7, 9, 3, 4, 6, 3, 7 Check Skills You’ll Need 12-1
3
Frequency Tables, Line Plots, and Histograms
PRE-ALGEBRA LESSON 12-1 Solutions 1. 5, 6, 9, 9, , 73, 77, 78, 79 median = 9 median = 77 mode = 9 mode = 73 3. 100, 150, 200, 300, , 3, 3, 4, 5, 6, 7, 7, 9 median = 200 median = 5 mode = 300 mode = 3 12-1
4
Frequency Tables, Line Plots, and Histograms
PRE-ALGEBRA LESSON 12-1 Quick Check A survey asked 22 students how many hours of TV they watched daily. The results are shown. Display the data in a frequency table. List the numbers of hours in order. 1 2 3 4 Use a tally mark for each result. ||| |||| | |||| || Count the tally marks and record the frequency. 3 7 6 Number Tally Frequency 12-1
5
Frequency Tables, Line Plots, and Histograms
PRE-ALGEBRA LESSON 12-1 Twenty-one judges were asked how many cases they were trying on Monday. The frequency table below shows their responses. Display the data in a line plot. Then find the range. “How many cases are you trying?” Number Frequency 12-1
6
Frequency Tables, Line Plots, and Histograms
PRE-ALGEBRA LESSON 12-1 (continued) For a line plot, follow these steps , , and 3 Write a title that describes the data. Cases Tried by Judges 2 Mark an x for each response. x x x x x x x x x x x 1 Draw a number line with the choices below it. The greatest value in the data set is 4 and the least value is 0. So the range is 4 – 0, or 4. Quick Check 12-1
7
Frequency Tables, Line Plots, and Histograms
PRE-ALGEBRA LESSON 12-1 Solve. 1. Maria surveyed friends to find out how many pets each one has. The responses are below. Display the data in a frequency table. 0, 1, 1, 2, 3, 0, 1, 1, 3, 2, 1, 2, 1, 0, 1, 0, 0 2. Here are the numbers of books students read in the last month: 5, 4, 0, 12, 4, 5, 4, 3, 10, 5, 12, 3, 5, 7, 3, 10, 5, 0, 6. Display the data in a line plot. Then find the range. Pets Tally Frequency 0 IIII 5 1 IIII II 7 2 III 3 3 II 2 range: 12 12-1
8
Box-and-Whisker Plots
PRE-ALGEBRA LESSON 12-2 If the population of the United States is approximately 250 million and the median age is 33 yr, roughly how many people in the United States are younger than 33 years old? 125 million 12-2
9
Box-and-Whisker Plots
PRE-ALGEBRA LESSON 12-2 (For help, go to Lesson 3-3.) Find each median. 1. 12, 10, 11, 7, 9, 8, 10, 5 2. 4.5, 3.2, 6.3, 5.2, 5, 4.8, 6, 3.9 3. 55, 53, 67, 52, 50, 49, 51, 52, 52, 52 4. 101, 100, 100, 105, 102, 101 Check Skills You’ll Need 12-2
10
Box-and-Whisker Plots
PRE-ALGEBRA LESSON 12-2 Solutions 1. 5, 7, 8, 9, 10, 10, 11, 12 median = = 9.5 2. 3.2, 3.9, 4.5, 4.8, 5, 5.2, 6, 6.3 median = = 4.9 3. 49, 50, 51, 52, 52, 52, 52, 53, 55, 67 median = = 52 4. 100, 100, 101, 101, 102, 105 median = = 101 9 + 10 2 2 2 2 12-2
11
Box-and-Whisker Plots
PRE-ALGEBRA LESSON 12-2 The data below represent the wingspans in centimeters of captured birds. Make a box-and-whisker plot. 61 35 61 22 33 29 40 62 21 49 72 75 28 21 54 Step 1 Arrange the data in order from least to greatest. Find the median. 21 21 22 28 29 33 35 40 49 54 61 61 62 72 75 Step 2 Find the lower quartile and upper quartile, which are the medians of the lower and upper halves. 21 21 22 28 29 33 35 40 49 54 61 61 62 72 75 lower quartile = 28 upper quartile = 61 12-2
12
Box-and-Whisker Plots
PRE-ALGEBRA LESSON 12-2 (continued) Step 3 Draw a number line. Mark the least and greatest values, the median, and the quartiles. Draw a box from the first to the third quartiles. Mark the median with a vertical segment. Draw whiskers from the box to the least and greatest values. Quick Check 12-2
13
Box-and-Whisker Plots
PRE-ALGEBRA LESSON 12-2 Use box-and-whisker plots to compare test scores from two math classes. Class A: 92, 84, 76, 68, 90, 67, 82, 71, 79, 85, 79 Class B: 78, 93, 81, 98, 69, 95, 74, 87, 81, 75, 83 Draw a number line for both sets of data. Use the range of data points to choose a scale. Draw the second box-and-whisker plot below the first one. Quick Check 12-2
14
Box-and-Whisker Plots
PRE-ALGEBRA LESSON 12-2 Describe the data in the box-and-whisker plot. The lowest score is 55 and the highest is 85. One fourth of the scores are at or below 66 and one fourth of the scores are at or above 80. Half of the scores are at or between 66 and 80 and thus within 10 points of the median, 76. Quick Check 12-2
15
Box-and-Whisker Plots
PRE-ALGEBRA LESSON 12-2 The plots below compare the percents of students who were eligible to those who participated in extracurricular activities in one school from 1992 to What conclusions can you draw? About 95% of the students were eligible to participate in extracurricular activities. Around 60% of the students did participate. A little less than two thirds of the eligible students participated in extracurricular activities. Quick Check 12-2
16
Box-and-Whisker Plots
PRE-ALGEBRA LESSON 12-2 Solve. 1. Use the data to make a box-and-whisker plot. Student heights (in.) are: 60, 66, 59, 67, 68, 63, 62, 61, 69, 64, 61. a. What is the median height? b. Between what heights do 50% of the students fall? 63 in. between 61 in. and 67 in. 12-2
17
Box-and-Whisker Plots
PRE-ALGEBRA LESSON 12-2 2. The box-and-whisker plots below compare prices for the same items at Mary’s Discount Store and Ed’s Clothing. What conclusions can you draw? Prices at the discount store are more tightly grouped around the median price of $25. Half the items cost from $18 to $45. For less expensive items, there is not much difference in the prices at the two stores. For more expensive items, the discount store offers lower prices. 12-2
18
Using Graphs to Persuade
PRE-ALGEBRA LESSON 12-3 Use estimation to create a circle graph. Twenty percent of the students surveyed always prefer a salad. Thirty percent always prefer a hamburger. The rest prefer a hamburger sometimes and a salad sometimes. Check students’ graphs. The graphs should show 20% (72°) salad, 30% (108°) hamburger, and 50% (180°) salad or hamburger. 12-3
19
Using Graphs to Persuade
PRE-ALGEBRA LESSON 12-3 (For help, go to Lesson 8-3.) Find the slope of AB in each graph. 1. 2. Check Skills You’ll Need 12-3
20
Using Graphs to Persuade
PRE-ALGEBRA LESSON 12-3 Solutions 1. 2. 1 2 1 2 12-3
21
Using Graphs to Persuade
PRE-ALGEBRA LESSON 12-3 Which title would be more appropriate for the graph below: “Texas Overwhelms California” or “Areas of California and Texas”? Explain. 12-3
22
Using Graphs to Persuade
PRE-ALGEBRA LESSON 12-3 (continued) Because of the break in the vertical axis, the bar for Texas appears to be more than six times the height of the bar for California. Actually, the area of Texas is about 267,000 mi2, which is not even two times the area of California, which is about 159,000 mi2. The title “Texas Overwhelms California” could be misleading. “Areas of Texas and California” better describes the information in the graph. Quick Check 12-3
23
Using Graphs to Persuade
PRE-ALGEBRA LESSON 12-3 Study the graphs below. Which graph gives the impression of a sharper increase in rainfall from March to April? Explain. 12-3
24
Using Graphs to Persuade
PRE-ALGEBRA LESSON 12-3 (continued) In the second graph, the months are closer together and the rainfall amounts are farther apart than in the first graph. Thus the line appears to climb more rapidly from March to April in the second graph. Quick Check 12-3
25
Using Graphs to Persuade
PRE-ALGEBRA LESSON 12-3 What makes the graph misleading? Explain. The “cake” on the right has much more than two times the area of the cake on the left. Quick Check 12-3
26
Using Graphs to Persuade
PRE-ALGEBRA LESSON 12-3 Solve. 1. Name two ways you can use graphs to give different impressions of the same data. 2. What makes this graph misleading? Explain. Answers may vary. Sample: Use breaks in scales; vary the size of scale intervals. Both dimensions of the “photo” on the right were changed. This gives the impression that the difference in costs is much greater than it really is. 12-3
27
Counting Outcomes and Theoretical Probability
PRE-ALGEBRA LESSON 12-4 If you roll two standard number cubes, what is the probability that the sum will be 1? 11? Less than 4? 1 18 ; 12 12-4
28
Counting Outcomes and Theoretical Probability
PRE-ALGEBRA LESSON 12-4 (For help, go to Lesson 6-4.) A bag has 5 blue (B) chips, 4 red (R) chips, and 3 tan (T) chips. Find each probability for choosing a chip at random from the bag. 1. P(R) 2. P(not R) 3. P(B) 4. P(R or B) 5. P(T) 6. P(B or T) Check Skills You’ll Need 12-4
29
Counting Outcomes and Theoretical Probability
PRE-ALGEBRA LESSON 12-4 Solutions 1. 2. 3. 4. 5. 6. 1 3 4 12 favorable outcomes all possible outcomes = drawing a red chip favorable outcomes all possible outcomes = drawing a chip that is not red 12 8 2 3 favorable outcomes all possible outcomes = drawing a blue chip 12 5 favorable outcomes all possible outcomes = drawing a red or blue chip 12 9 3 4 favorable outcomes all possible outcomes = drawing a tan chip 12 3 1 4 favorable outcomes all possible outcomes = drawing a blue or tan chip 12 8 2 3 12-4
30
Counting Outcomes and Theoretical Probability
PRE-ALGEBRA LESSON 12-4 The school cafeteria sells sandwiches for which you can choose one item from each of the following categories: two breads (wheat or white), two meats (ham or turkey), and two condiments (mayonnaise or mustard). Draw a tree diagram to find the number of sandwich choices. mayonnaise Each branch of the “tree” represents one choice—for example, wheat-ham-mayonnaise. wheat white ham turkey mustard There are 8 possible sandwich choices. Quick Check 12-4
31
Counting Outcomes and Theoretical Probability
PRE-ALGEBRA LESSON 12-4 How many two-digit numbers can be formed for which the first digit is odd and the second digit is even? 5 • 5 = 25 first digit, possible choices second digit, numbers, There are 25 possible two-digit numbers in which the first digit is odd and the second digit is even. Quick Check 12-4
32
Counting Outcomes and Theoretical Probability
PRE-ALGEBRA LESSON 12-4 Quick Check Use a tree diagram to show the sample space for guessing right or wrong on two true-false questions. Then find the probability of guessing correctly on both questions. right wrong The tree diagram shows there are four possible outcomes, one of which is guessing correctly on both questions. P(event) = Use the probability formula. number of favorable outcomes number of possible outcomes = 1 4 The probability of guessing correctly on two true/false questions is . 1 4 12-4
33
Counting Outcomes and Theoretical Probability
PRE-ALGEBRA LESSON 12-4 In some state lotteries, the winning number is made up of five digits chosen at random. Suppose a player buys 5 tickets with different numbers. What is the probability that the player has a winning number? First find the number of possible outcomes. For each digit, there are 10 possible outcomes, 0 through 9. 1st digit outcomes 10 2nd digit 3rd digit 5th digit 4th digit total = 100,000 • Then find the probability when there are five favorable outcomes. P(winning number) = = number of favorable outcomes number of possible outcomes 5 100,000 5 100,000 The probability is , or 1 20,000 Quick Check 12-4
34
Counting Outcomes and Theoretical Probability
PRE-ALGEBRA LESSON 12-4 Use the following information for Questions 1 and 2. In a game, a number cube is tossed to determine the number of spaces to move, and a coin is tossed to determine forward or backward movement. 1. How many possible outcomes are there? 2. What is the theoretical probability you will move four spaces? 3. How many different three-digit whole numbers are possible using the digits 1, 2, 3, 4, and 5? 12 1 6 125 12-4
35
Independent and Dependent Events
PRE-ALGEBRA LESSON 12-5 Multiply. Express the answers in lowest terms. 5 6 a. 3 b. 3 4 12 15 c. 7 10 2 21 1 15 5 2 or 1 3 5 12-5
36
Independent and Dependent Events
PRE-ALGEBRA LESSON 12-5 (For help, go to Lesson 5-4.) Multiply. 1. • 2. • 3. • 4. • 5. • 6. • 3 5 1 5 1 4 2 4 4 10 2 10 5 9 4 8 4 7 3 6 9 10 8 9 Check Skills You’ll Need 12-5
37
Independent and Dependent Events
PRE-ALGEBRA LESSON 12-5 Solutions 3 25 2 16 1 8 8 100 2 25 = = 20 72 5 18 12 42 2 7 72 90 4 5 = = = 12-5
38
Independent and Dependent Events
PRE-ALGEBRA LESSON 12-5 Quick Check You roll a number cube once. Then you roll it again. What is the probability that you get 5 on the first roll and a number less than 4 on the second roll? P(5) = 1 6 There is one 5 among 6 numbers on a number cube. P(less than 4) = 3 6 There are three numbers less than 4 on a number cube. P(5, then less than 4) = P(5) • P(less than 4) = • 1 6 3 36 12 = , or The probability of rolling 5 and then a number less than 4 is 1 12 12-5
39
Independent and Dependent Events
PRE-ALGEBRA LESSON 12-5 Bluebonnets grow wild in the southwestern United States. Under the best conditions in the wild, each bluebonnet seed has a 20% probability of growing. Suppose you plant bluebonnet seeds in your garden and use a fertilizer that increases to 50% the probability that a seed will grow. If you select two seeds at random, what is the probability that both will grow in your garden? P(a seed grows) = 50%, or 0.50 Write the percent as a decimal. P(two seeds grow) = P(a seed grows) • P(a seed grows) = 0.50 • 0.50 Substitute. = 0.25 Multiply. = 25% Write 0.25 as a percent. Quick Check The probability that two seeds will grow is 25%. 12-5
40
Independent and Dependent Events
PRE-ALGEBRA LESSON 12-5 Three girls and two boys volunteer to represent their class at a school assembly. The teacher selects one name and then another from a bag containing the five students’ names. What is the probability that both representatives will be boys? P(boy) = 2 5 Two of five students are boys. P(boy after boy) = 1 4 If a boy’s name is drawn, one of the four remaining students is a boy. P(boy, then boy) = P(boy) • P(boy after boy) = • 2 5 1 4 Substitute. 2 20 1 10 = , or Simplify. The probability that both representatives will be boys is 1 10 Quick Check 12-5
41
Independent and Dependent Events
PRE-ALGEBRA LESSON 12-5 Solve. 1. You roll a number cube once. Then you roll it again. What is the probability that you get 6 on the first roll and a number greater than 3 on the second roll? 2. Suppose there are three white marbles and three black marbles in a bag and you want to remove two marbles. What is the probability that you will select a white marble and then a black marble? Express your answer as a percent. 1 12 30% 12-5
42
Independent and Dependent Events
PRE-ALGEBRA LESSON 12-5 Solve. 3. Each of five girls and seven boys wants to be one of the two announcers for a variety show. To be fair, a teacher puts the names of the twelve students in a hat and draws two. What is the probability that the teacher will draw the names of two boys? Of two girls? 7 22 5 33 ; 12-5
43
Permutations and Combinations
PRE-ALGEBRA LESSON 12-6 Bianca’s family needs to choose exterior paint for their new house. The wall colors are white, green, and beige. The trim colors are white, green, blue, and cocoa. How many combinations of wall color and trim are possible? 12 12-6
44
Permutations and Combinations
PRE-ALGEBRA LESSON 12-6 (For help, go to Lesson 12-4.) Use the Counting Principle to find the number of outcomes. 1. Roll 2 number cubes. 2. Choose three different letters. 3. Select a month and a day of the week. 4. Toss a coin 4 times. Check Skills You’ll Need 12-6
45
Permutations and Combinations
PRE-ALGEBRA LESSON 12-6 Solutions 1. first number second number 6 outcomes 6 outcomes 6 6 = 36 2. first letter second letter third letter (different from 1st) (different from 1st & 2nd) 26 choices 25 choices 24 choices 26 25 24 = 15,600 12-6
46
Permutations and Combinations
PRE-ALGEBRA LESSON 12-6 Solutions (continued) 3. month day 12 choices 7 choices 12 7 = 84 4. first toss second toss third toss fourth toss 2 outcomes 2 outcomes 2 outcomes 2 outcomes 2 2 2 2 = 16 12-6
47
Permutations and Combinations
PRE-ALGEBRA LESSON 12-6 Find the number of permutations possible for the letters H, O, M, E, and S. 1st letter 5 choices 5 2nd letter 4 choices 4 3rd letter 3 choices 3 5th letter 1 choice 1 4th letter 2 choices 2 = 120 • There are 120 permutations of the letters H, O, M, E, and S. Quick Check 12-6
48
Permutations and Combinations
PRE-ALGEBRA LESSON 12-6 In how many ways can you line up 3 students chosen from 7 students for a photograph? 7 students Choose 3. 7P3 = 7 • 6 • 5 = 210 Simplify You can line up 3 students from 7 in 210 ways. Quick Check 12-6
49
Permutations and Combinations
PRE-ALGEBRA LESSON 12-6 In how many ways can you choose two states from the table when you write reports about the areas of states? State Area (mi2) Alabama Colorado Maine Oregon Texas 50,750 103,729 30,865 96,003 261,914 Make an organized list of all the combinations. 12-6
50
Permutations and Combinations
PRE-ALGEBRA LESSON 12-6 (continued) AL, CO AL, ME AL, OR AL, TX Use abbreviations of each CO, ME CO, OR CO, TX state’s name. First, list all ME, OR ME, TX pairs containing Alabama. OR, TX Continue until every pair of states is listed. There are ten ways to choose two states from a list of five. Quick Check 12-6
51
Permutations and Combinations
PRE-ALGEBRA LESSON 12-6 How many different pizzas can you make if you can choose exactly 5 toppings from 9 that are available? 9 toppings Choose 5. 9C5 = 9P5 5P5 = = 126 Simplify. 9 • 81 • 7 • 62 • 51 51 • 41 • 31 • 21 • 1 You can make 126 different pizzas. Quick Check 12-6
52
Permutations and Combinations
PRE-ALGEBRA LESSON 12-6 Tell which type of arrangement—permutations or combinations—each problem involves. Explain. a. How many different groups of three vegetables could you choose from six different vegetables? b. In how many different orders can you play 4 DVDs? Combinations; the order of the vegetables selected does not matter. Permutations; the order in which you play the DVDs matters. Quick Check 12-6
53
Permutations and Combinations
PRE-ALGEBRA LESSON 12-6 Find the number of permutations or combinations. 1. Find the number of permutations of the last four digits in the phone number 555–1234. 2. In how many ways can you arrange six out of eight books on a shelf? 3. In how many ways can you choose three different items from a menu containing seven items? Does each problem involve permutations or combinations? 4. How many different groups of four ice cream toppings can you choose from sixteen toppings? 5. In how many different ways can five students line up? 24 20,610 35 combinations permutations 12-6
54
Experimental Probability
PRE-ALGEBRA LESSON 12-7 There are 15 girls in a class of 27 students. Using lowest terms, what fraction of the students are girls? What fraction are boys? 5 9 4 ; 12-7
55
Experimental Probability
PRE-ALGEBRA LESSON 12-7 (For help, go to Lesson 6-5.) Write each decimal or fraction as a percent. 3 5 7 12 5 8 Check Skills You’ll Need 12-7
56
Experimental Probability
PRE-ALGEBRA LESSON 12-7 Solutions = 80% = 53% = 62.5% 4. = 0.6 = 60% = = 58 % = = 62.5% 3 5 7 12 1 3 5 8 12-7
57
Experimental Probability
PRE-ALGEBRA LESSON 12-7 A medical study tests a new medicine on 3,500 people. It produces side effects for 1,715 people. Find the experimental probability that the medicine will cause side effects. P(event) = number of times an event occurs number of times an experiment is done = = 0.49 1,715 3,500 The experimental probability that the medicine will cause side effects is 0.49, or 49%. Quick Check 12-7
58
Experimental Probability
PRE-ALGEBRA LESSON 12-7 Simulate the correct guessing of answers on a multiple-choice test where each problem has four answer choices (A, B, C, and D). Use a 4-section spinner to simulate each guess. Mark the sections as 1, 2, 3, and 4. Let “1” represent a correct choice. Here are the results of 50 trials. P(event) = = = number of times an event occurs number of times an experiment is done 1 5 10 50 The experimental probability of guessing correctly is . 1 5 Quick Check 12-7
59
Experimental Probability
PRE-ALGEBRA LESSON 12-7 Solve. 1. Jenny made 42 out of 70 free throws. What is the experimental probability that she will make her next free throw? 2. If 152 of 722 students would choose fish for lunch, what is the experimental probability that a student chosen at random will choose fish? 60% about 21% 12-7
60
Random Samples and Surveys
PRE-ALGEBRA LESSON 12-8 Write and solve the proportion: The ratio of scouts to leaders is 25 to 1. If there are 125 scouts, how many leaders are there? 25 1 125 5 = ; 12-8
61
Random Samples and Surveys
PRE-ALGEBRA LESSON 12-8 (For help, go to Lesson 6-2.) Solve each proportion. = = = = 8 32 n 450 7 25 n 24,000 2 250 n 50,000 4 100 n 144,000 Check Skills You’ll Need 12-8
62
Random Samples and Surveys
PRE-ALGEBRA LESSON 12-8 Solutions = = 32n = n = 168,000 = = n = n = 6,720 = = 250n = 100, n = 576,000 n = n = 5,760 n 450 8 32 24,000 7 25 4 100 144,000 2 250 50,000 32n 3600 25n 168,000 250n 100,000 100n 576,000 12-8
63
Random Samples and Surveys
PRE-ALGEBRA LESSON 12-8 Quick Check You want to find out how many people in the community use computers on a daily basis. Tell whether each survey plan describes a good sample. Explain. a. Interview every tenth person leaving a computer store. b. Interview people at random at the shopping center. c. Interview every tenth student who arrives at school on a school bus. This is not a good sample. People leaving a computer store are more likely to own computers. This is a good sample. It is selected at random from the population you want to study. This is not a good sample. This sample will be composed primarily of students, but the population you are investigating is the whole community. 12-8
64
Random Samples and Surveys
PRE-ALGEBRA LESSON 12-8 From 20,000 calculators produced, a manufacturer takes a random sample of 300 calculators. The sample has 2 defective calculators. Estimate the total number of defective calculators. defective sample calculators sample calculators defective calculators calculators = Write a proportion. 2 300 n 20,000 = Substitute. 2(20,000) = 300n Write cross products. 2(20,000) 300 300n = Divide each side by 300. n Simplify. Estimate: About 133 calculators are defective. Quick Check 12-8
65
Random Samples and Surveys
PRE-ALGEBRA LESSON 12-8 Solve. 1. To find out the type of music the general population prefers, you survey people at random at a local art museum. Does the survey plan describe a good sample? 2. Of 80 sweaters, 6 have flaws. Estimate how many of 38,000 sweaters have flaws. Not a good sample; it includes only people who visit the art museum. 2,850 sweaters 12-8
66
Problem Solving Strategy: Simulate the Problem
PRE-ALGEBRA LESSON 12-9 In a certain part of a state, only the letters J, K, L, M, and N can be used to form a 2-letter beginning for a license plate. How many different 2-letter beginnings are possible? 25 beginnings; 20 using two different letters and 5 using the same letter twice 12-9
67
Problem Solving Strategy: Simulate the Problem
PRE-ALGEBRA LESSON 12-9 (For help, go to Lesson 12-1.) Create a frequency table showing the number of times each letter of the alphabet appears in the sentence below. A simulation is a model of a real experience. Check Skills You’ll Need 12-9
68
Problem Solving Strategy: Simulate the Problem
PRE-ALGEBRA LESSON 12-9 Solutions 12-9
69
Problem Solving Strategy: Simulate the Problem
PRE-ALGEBRA LESSON 12-9 A softball player has an average of getting a base hit 2 times in every 7 times at bat. What is an experimental probability that she will get a base hit the next time she is at bat? You can use a spinner to simulate the problem. Construct a spinner with seven congruent sections. Make five of the sections blue and two of them red. The blue sections represent not getting a base hit and the red sections represent getting a base hit. Each spin represents one time at bat. 12-9
70
Problem Solving Strategy: Simulate the Problem
PRE-ALGEBRA LESSON 12-9 (continued) Use the results given in the table below. “B” stands for blue and “R” stands for red. B B B B R R B B R B B R B B R B B B B R R B B R B B B B R B B B B B B B B B B B B B R B B B R B B B B B B R R B B B B R R B B B B B B B B B B B B B B B R R B B B R R B B R B B B B B B B B B R B B B R 12-9
71
Problem Solving Strategy: Simulate the Problem
PRE-ALGEBRA LESSON 12-9 (continued) Make a frequency table. Makes a Base Hit Doesn’t Make a Base Hit |||| |||| |||| |||| || |||| |||| |||| |||| |||| |||| |||| |||| |||| |||| |||| |||| |||| |||| |||| ||| An experimental probability that she gets a base hit the next time she is at bat is 0.22, or 22%. Quick Check 12-9
72
Problem Solving Strategy: Simulate the Problem
PRE-ALGEBRA LESSON 12-9 1. You and a friend play a game in which you each toss a coin. You score a point for each heads and your friend scores a point for each tails. The first person to score ten points wins. The score is 8 to 6 in your favor. Describe a simulation that completes the game and use it to find an experimental probability that your friend will win. Check students’ work. 12-9
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.