Download presentation
Presentation is loading. Please wait.
Published byLily O'Neill Modified over 11 years ago
1
The PSI UCN source Status summer/autumn 2007: 1) Introduction 2) Source principle 3) R & D experiments UCN storage, losses and depolarization UCN production in solid deuterium 4) Some impressions
2
Zürich - Vancouver
4
Switzerland PSI
5
Paul-Scherrer-Institut SLS: 600 MeV p cyclotron 2 mA, 1.2 MW, since 1974 Upgrade 2 MW (2009) SR:, SINQ: n UCN: n Proton cyclotron for medical application: p PSI: 1200 employees 1000 external users
6
Ring cyclotron: 600MeV, 2mA 1.2MW (unique!) Proton accelerator @ PSI UCN Source nEDM experiment
7
600 MeV How do we make neutrons at PSI?
8
PSI UCN source spallation target 1.2 MW p beam 2.5 m 2m 3
9
Spallationsprozess
10
PSI UCN source heavy water moderator 2.5 m 2m 3
11
PSI UCN source heavy water moderator 2.5 m 2m 3 Lebensdauer in D 2 O: 5 ms v = 2200 m/s Reichweite: ~10 m
12
Spallation target: lead (82p + 126n) Proton beam: 2mA (or more!) 10 16 p/s 1 proton 10 neutrons 10 17 n/s ~10 s Puls 10 18 n/puls Average neutron energy 2MeV 20000 km/s After ca. 30 bounces ~25 meV 2200 m/s Neutron production at PSI (SINQ, UCN)
13
0.2 10 13 /cm 2 /mA 0.4 0.8 1.0 2.0 4.0 6.0 8.0 10.0 Φ 0 Thermal flux sD2 Pb Neutron flux at PSI UCN source sD 2 near target! 8 s-puls (1.2 MW): 5 K 8 K 800 s no beam 8 K 5 K
14
800s 8s Pulsed UCN source
15
800s 8s Pulsed UCN source
16
800s 8s Pulsed UCN source
17
UCN cold source cold source h = 2.5 m V = 2m 3 v = 5 – 9 m/s v = 0 – 7 m/s a b Coherent strong interaction surface potential of solid deuterium (106 neV 4.5 m/s) Cu Be, DLC Needs: storage volume coating ( storable neutrons ~v c 3 !)
18
low wall loss probability µ long storage time high Fermi potential more UCN (v 3 ) Al Pb Ni C Diamond BeO Be 300 K Be 70 K 58 Ni 65 Cu CuFe DLC Storage materials
19
Detector count rate: B Sample Magnet UCN from ILL-turbine Detector B 10 5 1 100 % 0 0 100 200 300 400 time [s] wall material: loss and depolarization
20
Wall loss coefficient [1 / wall collision] x 10 -4 DLC is a good choice also for (DLC)=110 -6, (Be)=1010 -6 Diamondlike carbon F. Atchison et al., Phys. Lett. B 625, 19 (2005). T. Brys et al., Nucl. Instr. and Meth. in Phys. Res. A 550, 637 (2005).
21
UCN transmission: Fermi potential v c (Be) = (6.9 0.1) m/s v c (DLC) = (6.9 0.1) m/s F. Atchison et al., NIMB 260, 647 (2007), Phys. Lett. B 642, 24 (2006).
22
DLC: (6.9 ± 0.2)m/s F. Atchison et al., NIMB 260, 647 (2007). PLB 642, 24 (2006). Be: (6.8 ± 0.2)m/s UCN transmission: Fermi potential
23
Need to know for solid Deuterium: UCN production cross section –theoretical: Golub and Böning, ZPB51(1983)95 –experimental: F. Atchison et al., PRC 71, 054601 (2005). UCN lifetime –theoretical: Liu et al., PRB62(2000)R3581 –experimental: Morris et al., PRL89(2002)272501 UCN mean free path –theoretical: incoherent cross section, inc = 4.1 barn –experimental: F. Atchison et al., PRL 95, 182502 (2005). solid D 2 : Motivation
24
~ 30ms v = 5 m/s = 150 mm / 30 ms h ~ 150mm R mfp, solid D 2 : Motivation
25
1000 – 100 m/s100 – 10 m/s 10 – 0 m/s cold very-cold ultra-cold Transmission experiments UCN, VCN
26
Liquid Solid 12 hours Preparation of sD 2 (T = 18 K)
27
Thermal stress
28
Thermal stress IV Mean free path 1 cm 2 cm 8 cm Cross sections UCN F. Atchison et al., PRL 95, 182502 (2005).
29
CN sD 2 UCN + CN Detector UCN UCN production at SINQ, PSI F.Atchison et al., PRC 71, 054601 (2005).
30
Empty cell liquid D 2 and gaseous D 2 solidD 2 UCN production at SINQ, PSI F. Atchison et al., PRC 71, 054601 (2005).
31
Our experiment: F.Atchison et al., PRC 71, 054601 (2005). R solid,8K = (1.11±0.23) x 10 -8 cm -1 – in agreement with Z.-Ch. Yu et al., ZPB62(1986)137 Estimate for PSI UCN source: CN ~ 2 x 10 13 cm -2 s -1 mA UCN ~ 30 ms –50% of equilibrium density after 4s proton pulse UCN = R solid,8K x CN x UCN x 0.5 5000 cm -3 2000 cm -3 in storage, 1000cm -3 in experiments In Grenoble: ρ(UCN) = 10 UCN cm –3 UCN production at PSI
32
Ring cyclotron: 600MeV, 2mA 1.2MW (unique!) Where is the UCN source UCN Source nEDM experiment
33
Proton beam
34
Proton beam line Proton beam 1000 A (10 ms) test beam September 6, 2007 UCN source
35
1.2 MW proton beam, UCN source, Exp. Areas EDM > 1000 UCN/cm 3 n target Test beam 1000 A, 10 ms September 6, 2007 Experimental areas
36
test beam dump
37
Harp monitors Quadrupole collimatorD 2 O circuit Proton beam Experimental floor Existing
38
Proton beam line Proton beam
39
PSI UCN source spallation target 1.2 MW p beam 2.5 m 2m 3 Cold source Relative Masses: Flat foil 100 % Torus 110 % Dome 131 % 50 cm Torus Dome
40
UCN tank fabrication
41
Vacuum box of UCN tank system
42
spallation target target head iron shielding lead block target water pipes
43
D 2 Gas System He liquefier D 2 hut D 2 tanks 30 m 3
44
Gas handling boxes
45
UCN-Tanksystem: Schwerwasser 8m 3 D 2 O-Tanks Pumpe (25 l/s) Heat exchangers Ion exchangers
46
Papers in 2003/04 1)Ortho-para equilibrium in a liquid D 2 neutron moderator under irradiation PRB 68, 094114 (2003). 2)Spallation yields of neutrons produced in thick lead/bismuth targets by protons at incident energies of 420 and 590 MeV NIMB 217, 202 (2004). 3)An apparatus for the investigation of solid D 2 with respect to ultra-cold neutron sources NIMA 533, 491 (2004).
47
Papers in 2005 1) The simulation of ultracold neutron experiments using GEANT4 NIMA 552, 513 (2005). 2) On the use of lead/tin alloys as target material for the production of spallation neutrons NIMA 539, 646 (2005) 3) A fast kicker magnet for the PSI 600 MeV proton beam to the PSI ultracold neutron source NIMA 541, 598 (2005) 4) Magnetron sputtered Be coatings as reflectors for ultracold neutrons NIMA 551, 429 (2005). 5) Measured Total Cross Sections of Slow Neutrons Scattered by Gaseous and Liquid 2 H 2 PRL 94, 212502 (2005) 6) Production of ultracold neutrons from a cold neutron beam on a 2 H 2 target PRC 71, 054601 (2005) 7) Magnetic field stabilization for magnetically shielded volumes by external field coils NIMA 554, 527 (2005). 8) A novel apparatus for the investigation of material properties for the storage of ultracold neutrons NIMA 550, 637 (2005)
48
Papers in 2005/06/07 1)First storage of ultracold neutrons using foils coated with diamond-like carbon Phys. Lett. B 625, 19 (2005). 2)Measured total cross sections of slow neutrons scattered by solid deuterium and implications for ultracold neutron sources Phys. Rev. Lett. 95, 182502 (2005). 3) Storage of ultracold neutrons in a volume coated with diamondlike carbon Phys. Rev. C 74, 055501 (2006). 4) Diamondlike carbon can replace beryllium in physics with ultracold neutrons Phys. Lett. B 642, 24 (2006). 5) The spallation target of the ultra-cold neutron source UCN at PSI NIMA 564, 51 (2006). 6) A time-of-flight chopper for ultracold neutrons NIMA, 557, 572 (2006). 7) Structural characterization of diamond-like carbon films for ultracold neutron applications Diamond & Related Materials, 16, 334 (2007). 8) Measurement of the Fermi potential of diamondlike carbon and other materials NIMB 260, 647 (2007).
49
On the way to the top! Schedule: 1 st UCN October 2008
61
PSI UCN source heavy water moderator 2.5 m 2m 3 Lifetime in D 2 O: 5 ms v = 2200 m/s Range: ~10 m
62
PSI UCN source heavy water moderator 2.5 m 2m 3 Lebensdauer in D 2 O: 5 ms v = 2200 m/s Reichweite: ~10 m
63
spallation target target head iron shielding lead block target water pipes
64
target construction
65
target head lead block water pipes
66
iron shielding block target construction
67
Detector count rate: B Sample Magnet UCN from ILL-turbine Detector B 10 5 1 100 % 0 0 100 200 300 400 time [s] wall material: loss and depolarization
68
Detector count rate: B Sample Magnet UCN from ILL-turbine Detector B 10 5 1 100 % 0 0 100 200 300 400 time [s] wall material: loss and depolarization
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.