Download presentation
Presentation is loading. Please wait.
Published bySusan Barnett Modified over 9 years ago
1
Define Inverse Variation #3 Give a real life example
2
The PRODUCT of two variables will always be the same (constant). Example: –The speed, s, you drive and the time, t, it takes for you to get to Rochester. #3
3
State the General Form of an inverse variation equation. Draw an example of a typical inverse variation and name the graph. #4
4
xy = k or. HYPERBOLA (ROTATED) #4
5
FUNCTIONS BLUE CARD
6
Define Domain Define Range #9
7
DOMAIN - List of all possible x- values (aka – List of what x is allowed to be). RANGE – List of all possible y- values. #9
8
Test whether a relation (any random equation) is a FUNCTION or not? #10
9
Vertical Line Test Each member of the DOMAIN is paired with one and only one member of the RANGE. #10
10
Define 1 – to – 1 Function How do you test for one? #11
11
1-to-1 Function: A function whose inverse is also a function. Horizontal Line Test #11
12
How do you find an INVERSE Function… ALGEBRAICALLY? GRAPHICALLY? #12
13
Algebraically: Switch x and y… …solve for y. Graphically: Reflect over the line y=x #12
14
What notation do we use for Inverse? If point (a,b) lies on f(x)… #13
15
…then point (b,a) lies on Notation: #13
16
f(-x) Identify the action Identify the result #17
17
Action: Negating x Result: Reflection over the y-axis #17
18
-f(x) Identify the action Identify the result #18
19
Action: negating y Result: Reflection over the x-axis #18
20
Exponents
21
When you multiply… the base and the exponents #46
22
KEEP (the base) ADD (the exponents) #46
23
When dividing… the base & the exponents. #47
24
Keep (the base) SUBTRACT (the exponents) #47
25
Power to a power… #48
26
MULTIPLY the exponents #48
27
Negative Exponents… #49
28
Reciprocate the base #49
29
Ground Hog Rule #50
31
Exponential Equations y = a(b) x Identify the meaning of a & b #51
32
Exponential equations occur when the exponent contains a variable a = initial amount b = growth factor b > 1 Growth b < 1 Decay #51
33
Name 2 ways to solve an Exponential Equation #52
34
1. Get a common base, set the exponents equal 2. Take the log of both sides #52
35
A typical EXPONENTIAL GRAPH looks like… #53
36
Horizontal asymptote y = 0 #53
37
Logarithms
38
Expand 1) Log (ab) 2) Log(a+b) #55
39
1. log(a) + log (b) 2. Done! #55
40
Expand 1. log (a/b) 2. log (a-b) #56
41
1. log(a) – log(b) 2. DONE!! #56
42
Expand 1. logx m #57
43
m log x #57
44
Convert exponential to log form 2 3 = 8 #58
46
Convert log form to exponential form log 2 8 = 3 #59
47
Follow the arrows. #59
48
Log Equations 1. every term has a log 2. not all terms have a log #60
49
1. Apply log properties and knock out all the logs 2. Apply log properties condense log equation convert to exponential and solve #60
50
What does a typical logarithmic graph look like? #61
51
Vertical asymptote at x = 0 #61
52
Change of Base Formula What is it used for? #62
53
Used to graph logs #62
54
EXACT TRIG VALUES
55
sin 30 or sin #66
57
sin 60 or sin #67
59
sin 45 or sin #68
61
sin 0 #69
62 0
63
sin 90 or sin #70
64
1
65
sin 180 or sin #71
66 0
67
sin 270 or sin #72
68
#72
69
sin 360 or sin #73
70 0
71
cos 30 or cos #74
73
cos 60 or cos #75
75
cos 45 or cos #76
77
cos 0 #77
78
1
79
cos 90 or cos #78
80 0
81
cos 180 or cos #79
82
#79
83
cos 270 or cos #80
84 0
85
cos 360 or cos #81
86
1
87
tan 30 or tan #82
89
tan 60 or tan #83
91
tan 45 or tan #84
92
1
93
tan 0 #85
94 0
95
tan 90 or tan #86
96
D.N.E. or Undefined #86
97
tan 180 or tan #87
98 0
99
tan 270 or tan #88
100
D.N.E. Or Undefined #88
101
tan 360 or tan #89
102 0
103
Trigonometry Identities
104
Reciprocal Identity sec = #90
106
Reciprocal Identity csc = #91
108
cot = Reciprocal Identity #92
110
Quotient Identity #93
112
Trig Graphs
113
Amplitude #94
114
Height from the midline y = asin(fx) y = -2sinx amp = 2 #94
115
Frequency #95
116
How many complete cycles between 0 and #95
117
Period #96
118
How long it takes to complete one full cycle Formula: #96
119
y = sinx a) graph b) amplitude c) frequency d) period e) domain f) range #97
120
a) b) 1 c) 1 d) e) all real numbers f) #97
121
y = cosx a) graph b) amplitude c) frequency d) period e) domain f) range #98
122
a) b) 1 c) 1 d) e) all real numbers f) #98
123
y = tan x a) graph b) amplitude c) asymptotes at… #99
124
a) b) No amplitude c) Asymptotes are at odd multiplies of Graph is always increasing #99
125
y = csc x A) graph B) location of the asymptotes #100
126
b) Asymptotes are multiples of Draw in ghost sketch #100
127
y = secx A) graph B) location of the asymptotes #101
128
B) asymptotes are odd multiples of Draw in ghost sketch #101
129
y=cotx A) graph B) location of asymptotes #102
130
B) multiplies of Always decreasing #102
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.