Presentation is loading. Please wait.

Presentation is loading. Please wait.

Define Inverse Variation #3 Give a real life example.

Similar presentations


Presentation on theme: "Define Inverse Variation #3 Give a real life example."— Presentation transcript:

1 Define Inverse Variation #3 Give a real life example

2 The PRODUCT of two variables will always be the same (constant). Example: –The speed, s, you drive and the time, t, it takes for you to get to Rochester. #3

3 State the General Form of an inverse variation equation. Draw an example of a typical inverse variation and name the graph. #4

4 xy = k or. HYPERBOLA (ROTATED) #4

5 FUNCTIONS BLUE CARD

6 Define Domain Define Range #9

7 DOMAIN - List of all possible x- values (aka – List of what x is allowed to be). RANGE – List of all possible y- values. #9

8 Test whether a relation (any random equation) is a FUNCTION or not? #10

9 Vertical Line Test Each member of the DOMAIN is paired with one and only one member of the RANGE. #10

10 Define 1 – to – 1 Function How do you test for one? #11

11 1-to-1 Function: A function whose inverse is also a function. Horizontal Line Test #11

12 How do you find an INVERSE Function… ALGEBRAICALLY? GRAPHICALLY? #12

13 Algebraically: Switch x and y… …solve for y. Graphically: Reflect over the line y=x #12

14 What notation do we use for Inverse? If point (a,b) lies on f(x)… #13

15 …then point (b,a) lies on Notation: #13

16 f(-x) Identify the action Identify the result #17

17 Action: Negating x Result: Reflection over the y-axis #17

18 -f(x) Identify the action Identify the result #18

19 Action: negating y Result: Reflection over the x-axis #18

20 Exponents

21 When you multiply… the base and the exponents #46

22 KEEP (the base) ADD (the exponents) #46

23 When dividing… the base & the exponents. #47

24 Keep (the base) SUBTRACT (the exponents) #47

25 Power to a power… #48

26 MULTIPLY the exponents #48

27 Negative Exponents… #49

28 Reciprocate the base #49

29 Ground Hog Rule #50

30

31 Exponential Equations y = a(b) x Identify the meaning of a & b #51

32 Exponential equations occur when the exponent contains a variable a = initial amount b = growth factor b > 1 Growth b < 1 Decay #51

33 Name 2 ways to solve an Exponential Equation #52

34 1. Get a common base, set the exponents equal 2. Take the log of both sides #52

35 A typical EXPONENTIAL GRAPH looks like… #53

36 Horizontal asymptote y = 0 #53

37 Logarithms

38 Expand 1) Log (ab) 2) Log(a+b) #55

39 1. log(a) + log (b) 2. Done! #55

40 Expand 1. log (a/b) 2. log (a-b) #56

41 1. log(a) – log(b) 2. DONE!! #56

42 Expand 1. logx m #57

43 m log x #57

44 Convert exponential to log form 2 3 = 8 #58

45

46 Convert log form to exponential form log 2 8 = 3 #59

47 Follow the arrows. #59

48 Log Equations 1. every term has a log 2. not all terms have a log #60

49 1. Apply log properties and knock out all the logs 2. Apply log properties condense log equation convert to exponential and solve #60

50 What does a typical logarithmic graph look like? #61

51 Vertical asymptote at x = 0 #61

52 Change of Base Formula What is it used for? #62

53 Used to graph logs #62

54 EXACT TRIG VALUES

55 sin 30 or sin #66

56

57 sin 60 or sin #67

58

59 sin 45 or sin #68

60

61 sin 0 #69

62 0

63 sin 90 or sin #70

64 1

65 sin 180 or sin #71

66 0

67 sin 270 or sin #72

68 #72

69 sin 360 or sin #73

70 0

71 cos 30 or cos #74

72

73 cos 60 or cos #75

74

75 cos 45 or cos #76

76

77 cos 0 #77

78 1

79 cos 90 or cos #78

80 0

81 cos 180 or cos #79

82 #79

83 cos 270 or cos #80

84 0

85 cos 360 or cos #81

86 1

87 tan 30 or tan #82

88

89 tan 60 or tan #83

90

91 tan 45 or tan #84

92 1

93 tan 0 #85

94 0

95 tan 90 or tan #86

96 D.N.E. or Undefined #86

97 tan 180 or tan #87

98 0

99 tan 270 or tan #88

100 D.N.E. Or Undefined #88

101 tan 360 or tan #89

102 0

103 Trigonometry Identities

104 Reciprocal Identity sec = #90

105

106 Reciprocal Identity csc = #91

107

108 cot = Reciprocal Identity #92

109

110 Quotient Identity #93

111

112 Trig Graphs

113 Amplitude #94

114 Height from the midline y = asin(fx) y = -2sinx amp = 2 #94

115 Frequency #95

116 How many complete cycles between 0 and #95

117 Period #96

118 How long it takes to complete one full cycle Formula: #96

119 y = sinx a) graph b) amplitude c) frequency d) period e) domain f) range #97

120 a) b) 1 c) 1 d) e) all real numbers f) #97

121 y = cosx a) graph b) amplitude c) frequency d) period e) domain f) range #98

122 a) b) 1 c) 1 d) e) all real numbers f) #98

123 y = tan x a) graph b) amplitude c) asymptotes at… #99

124 a) b) No amplitude c) Asymptotes are at odd multiplies of Graph is always increasing #99

125 y = csc x A) graph B) location of the asymptotes #100

126 b) Asymptotes are multiples of Draw in ghost sketch #100

127 y = secx A) graph B) location of the asymptotes #101

128 B) asymptotes are odd multiples of Draw in ghost sketch #101

129 y=cotx A) graph B) location of asymptotes #102

130 B) multiplies of Always decreasing #102


Download ppt "Define Inverse Variation #3 Give a real life example."

Similar presentations


Ads by Google