Download presentation
Presentation is loading. Please wait.
Published byMadison Stokes Modified over 9 years ago
2
http://www.cse.unl.edu/~goddard/Courses/CSCE310J Fundamentals of Algorithm Analysis Dr. Steve Goddard goddard@cse.unl.edu CSCE 310J: Data Structures & Algorithms
3
Most of the slides in this lecture were originally created by Jeff Edmonds from York University
4
Relevant Mathematics Jeff Edmonds York University Classifying Functions The Time Complexity of an Algorithm Adding Made Easy Recurrence Relations
5
Start With Some Math Input Size Time Classifying Functions f(i) = n (n) Recurrence Relations T(n) = a T(n/b) + f(n) Adding Made Easy ∑ i=1 f(i). Time Complexity t(n) = (n 2 )
6
Assumed Knowledge Logarithms and Exponentials Existential and Universal Quantifiers, g b Loves(b,g) b g Loves(b,g)
7
Quantifiers: all, some “for all x” x P(x) is true iff P(x) is true for all x – universal quantifier (universe of discourse) “there exist x” x P(x) is true iff P(x) is true for some value of x –existential quantifier x A(x) is logically equivalent to x( A(x)) x A(x) is logically equivalent to x( A(x)) x (A(x) B(x)) “For all x such that if A(x) holds then B(x) holds”
8
Classifying Functions Giving an idea of how fast a function grows without going into too much detail.
9
Which are more alike?
10
Mammals
11
Which are more alike?
12
Dogs
13
Classifying Animals Vertebrates BirdsMammals Reptiles Fish Dogs Giraffe
14
Classifying Functions T(n)T(n) 101001,00010,000 log n 36913amoeba n 1/2 31031100bird 101001,00010,000human n log n 306009,000130,000my father n2n2 10010,00010 6 10 8 elephant n3n3 1,00010 6 10 9 10 12 dinosaur 2n2n 1,02410 30 10 300 10 3000 the universe Note: The universe contains approximately 10 50 particles. n
15
Which are more alike? n 1000 n2n2 2n2n
16
Which are more alike? Polynomials n 1000 n2n2 2n2n
17
Which are more alike? 1000n 2 3n 2 2n 3
18
Which are more alike? Quadratic 1000n 2 3n 2 2n 3
19
Classifying Functions? Functions
20
Classifying Functions Functions Constant Logarithmic Poly Logarithmic Polynomial Exponential ExpDouble Exp (log n) 5 n5n5 2 5n 5 log n5 2 n5n5 2 5n 2
21
Classifying Functions? Polynomial
22
Classifying Functions Polynomial LinearQuadratic Cubic ? 5n 2 5n 5n 3 5n 4
23
Logarithmic log 10 n = # digits to write n log 2 n = # bits to write n = 3.32 log 10 n log(n 1000 ) = 1000 log(n) Differ only by a multiplicative constant.
24
Poly Logarithmic (log n) 5 = log 5 n
25
Logarithmic << Polynomial For sufficiently large n log 1000 n << n 0.001
26
Linear << Quadratic For sufficiently large n 10000 n << 0.0001 n 2
27
Polynomial << Exponential For sufficiently large n n 1000 << 2 0.001 n
28
Ordering Functions Functions Constant Logarithmic Poly Logarithmic Polynomial Exponential ExpDouble Exp (log n) 5 n5n5 2 5n 5 log n5 2 n5n5 2 5n 2 <<
29
Which Functions are Constant? 5 1,000,000,000,000 0.0000000000001 -5 0 8 + sin(n) Yes No Yes
30
Which Functions are “Constant”? 5 1,000,000,000,000 0.0000000000001 -5 0 8 + sin(n) Yes No Yes Lie in between 7 9 The running time of the algorithm is a “Constant” It does not depend significantly on the size of the input.
31
Which Functions are Quadratic? n 2 … ?
32
Which Functions are Quadratic? n 2 0.001 n 2 1000 n 2 Some constant times n 2.
33
Which Functions are Quadratic? n 2 0.001 n 2 1000 n 2 5n 2 + 3n + 2log n
34
Which Functions are Quadratic? n 2 0.001 n 2 1000 n 2 5n 2 + 3n + 2log n Lie in between
35
Which Functions are Quadratic? n 2 0.001 n 2 1000 n 2 5n 2 + 3n + 2log n Ignore low-order terms Ignore multiplicative constants. Ignore "small" values of n. Write θ(n 2 ).
36
Which Functions are Polynomial? n 5 … ?
37
Which Functions are Polynomial? n c n 0.0001 n 10000 n to some constant power.
38
Which Functions are Polynomial? n c n 0.0001 n 10000 5n 2 + 8n + 2log n 5n 2 log n 5n 2.5
39
Which Functions are Polynomial? n c n 0.0001 n 10000 5n 2 + 8n + 2log n 5n 2 log n 5n 2.5 Lie in between
40
Which Functions are Polynomials? n c n 0.0001 n 10000 5n 2 + 8n + 2log n 5n 2 log n 5n 2.5 Ignore low-order terms Ignore power constant. Ignore "small" values of n. Write n θ(1)
41
Which Functions are Exponential? 2 n … ?
42
Which Functions are Exponential? 2 n 2 0.0001 n 2 10000 n n times some constant power raises to the power of 2.
43
Which Functions are Exponential? 2 n 2 0.0001 n 2 10000 n 8 n 2 n / n 100 2 n · n 100 too small? too big?
44
Which Functions are Exponential? 2 n 2 0.0001 n 2 10000 n 8 n 2 n / n 100 2 n · n 100 = 2 3n > 2 0.5n < 2 2n Lie in between
45
Which Functions are Exponential? 2 n 2 0.0001 n 2 10000 n 8 n 2 n / n 100 2 n · n 100 = 2 3n > 2 0.5n < 2 2n 2 0.5n > n 100 2 n = 2 0.5n · 2 0.5n > n 100 · 2 0.5n 2 n / n 100 > n 0.5n
46
Which Functions are Exponential? Ignore low-order terms Ignore base. Ignore "small" values of n. Ignore polynomial factors. Write 2 θ(n) 2 n 2 0.0001 n 2 10000 n 8 n 2 n / n 100 2 n · n 100
47
Classifying Functions Functions Constant Logarithmic Poly Logarithmic PolynomialExponential Exp Double Exp (log n) θ(1) n θ(1) 2 θ(n) θ(log n)θ(1) 2 n θ(1) 2 θ(n) 2
48
Notations Theta f(n) = θ(g(n))f(n) ≈ c g(n) BigOh f(n) = O(g(n))f(n) ≤ c g(n) Omega f(n) = Ω(g(n))f(n) ≥ c g(n) Little Oh f(n) = o(g(n))f(n) << c g(n) Little Omega f(n) = ω(g(n))f(n) >> c g(n)
49
Definition of Theta f(n) = θ(g(n))
50
Definition of Theta f(n) is sandwiched between c 1 g(n) and c 2 g(n) f(n) = θ(g(n))
51
Definition of Theta f(n) is sandwiched between c 1 g(n) and c 2 g(n) for some sufficiently small c 1 (= 0.0001) for some sufficiently large c 2 (= 1000) f(n) = θ(g(n))
52
Definition of Theta For all sufficiently large n f(n) = θ(g(n))
53
Definition of Theta For all sufficiently large n For some definition of “sufficiently large” f(n) = θ(g(n))
54
Definition of Theta 3n 2 + 7n + 8 = θ(n 2 )
55
Definition of Theta 3n 2 + 7n + 8 = θ(n 2 ) c 1 ·n 2 3n 2 + 7n + 8 c 2 ·n 2 ??
56
Definition of Theta 3n 2 + 7n + 8 = θ(n 2 ) 3·n 2 3n 2 + 7n + 8 4·n 2 34
57
Definition of Theta 3n 2 + 7n + 8 = θ(n 2 ) 3·1 2 3·1 2 + 7·1 + 8 4·1 2 1 False
58
Definition of Theta 3n 2 + 7n + 8 = θ(n 2 ) 3·7 2 3·7 2 + 7·7 + 8 4·7 2 7 False
59
Definition of Theta 3n 2 + 7n + 8 = θ(n 2 ) 3·8 2 3·8 2 + 7·8 + 8 4·8 2 8 True
60
Definition of Theta 3n 2 + 7n + 8 = θ(n 2 ) 3·9 2 3·9 2 + 7·9 + 8 4·9 2 9 True
61
Definition of Theta 3n 2 + 7n + 8 = θ(n 2 ) 3·10 2 3·10 2 + 7·10 + 8 4·10 2 10 True
62
Definition of Theta 3n 2 + 7n + 8 = θ(n 2 ) 3·n 2 3n 2 + 7n + 8 4·n 2 ?
63
Definition of Theta 3n 2 + 7n + 8 = θ(n 2 ) 3·n 2 3n 2 + 7n + 8 4·n 2 n 8 8
64
Definition of Theta 3n 2 + 7n + 8 = θ(n 2 ) 3·n 2 3n 2 + 7n + 8 4·n 2 True n 8
65
Definition of Theta 3n 2 + 7n + 8 = θ(n 2 ) 3·n 2 3n 2 + 7n + 8 4·n 2 7n + 8 1 · n 2 7 + 8 / n 1 · n n 8 True
66
Definition of Theta 3n 2 + 7n + 8 = θ(n 2 ) 3·n 2 3n 2 + 7n + 8 4·n 2 348 n 8 True
67
Definition of Theta n 2 = θ(n 3 )
68
Definition of Theta n 2 = θ(n 3 ) c 1 · n 3 n 2 c 2 · n 3 ??
69
Definition of Theta n 2 = θ(n 3 ) 0 · n 3 n 2 c 2 · n 3 0 True, but ?
70
Definition of Theta n 2 = θ(n 3 ) 0 Constants c1 and c2 must be positive! False
71
Definition of Theta 3n 2 + 7n + 8 = θ(n)
72
Definition of Theta 3n 2 + 7n + 8 = θ(n) c 1 ·n 3n 2 + 7n + 8 c 2 ·n ??
73
Definition of Theta 3n 2 + 7n + 8 = θ(n) 3·n 3n 2 + 7n + 8 100·n 3 100
74
Definition of Theta 3n 2 + 7n + 8 = θ(n) 3·n 3n 2 + 7n + 8 100·n ?
75
Definition of Theta 3n 2 + 7n + 8 = θ(n) 3·100 3·100 2 + 7·100 + 8 100·100 100 False
76
Definition of Theta 3n 2 + 7n + 8 = θ(n) 3·n 3n 2 + 7n + 8 10,000·n 3 10,000
77
Definition of Theta 3n 2 + 7n + 8 = θ(n) 3·10,000 3·10,000 2 + 7·10,000 + 8 100·10,000 10,000 False
78
Definition of Theta 3n 2 + 7n + 8 = θ(n) What is the reverse statement?
79
Understand Quantifiers!!! SamMary BobBeth John Marilin Monro FredAnn SamMary BobBeth John Marilin Monro FredAnn b, Loves(b, MM) b, Loves(b, MM) b, Loves(b, MM)] b, Loves(b, MM)]
80
Definition of Theta 3n 2 + 7n + 8 = θ(n) The reverse statement
81
Definition of Theta 3n 2 + 7n + 8 = θ(n) 3n 2 + 7n + 8 > 100·n 3 100 ?
82
Definition of Theta 3n 2 + 7n + 8 = θ(n) 3 · 100 2 + 7 · 100 + 8 > 100 · 100 3 100 True 100
83
Definition of Theta 3n 2 + 7n + 8 = θ(n) 3n 2 + 7n + 8 > 10,000·n 3 10,000 ?
84
Definition of Theta 3n 2 + 7n + 8 = θ(n) 3 · 10,000 2 + 7 · 10,000 + 8 > 10,000 · 10,000 3 10,000 True 10,000
85
Definition of Theta 3n 2 + 7n + 8 = θ(n) 3n 2 + 7n + 8 > c 2 ·n c1c1 c2c2 ?
86
Definition of Theta 3n 2 + 7n + 8 = θ(n) 3 · c 2 2 + 7 · c 2 + 8 > c 2 · c 2 c1c1 c2c2 True c2c2
87
Definition of Theta 3n 2 + 7n + 8 = θ(n) 3n 2 + 7n + 8 > c 2 ·n c1c1 c2c2 ? n0n0
88
Definition of Theta 3n 2 + 7n + 8 = θ(n) 3 · c 2 2 + 7 · c 2 + 8 > c 2 · c 2 c1c1 max(c 2,n 0 ) True c2c2 n0n0
89
Definition of Theta 3n 2 + 7n + 8 = g(n) θ(1) c 1, c 2, n 0, n n 0 g(n) c1 f(n) g(n) c2 3n 2 + 7n + 8 = n θ(1)
90
Definition of Theta 3n 2 + 7n + 8 = n θ(1) n c1 3n 2 + 7n + 8 n c2 c 1, c 2, n 0, n n 0 g(n) c1 f(n) g(n) c2 ??
91
Definition of Theta 3n 2 + 7n + 8 = n θ(1) n 2 3n 2 + 7n + 8 n 3 c 1, c 2, n 0, n n 0 g(n) c1 f(n) g(n) c2 23
92
Definition of Theta 3n 2 + 7n + 8 = n θ(1) n 2 3n 2 + 7n + 8 n 3 c 1, c 2, n 0, n n 0 g(n) c1 f(n) g(n) c2 23? n ?
93
Definition of Theta 3n 2 + 7n + 8 = n θ(1) n 2 3n 2 + 7n + 8 n 3 c 1, c 2, n 0, n n 0 g(n) c1 f(n) g(n) c2 235 n 5
94
Definition of Theta 3n 2 + 7n + 8 = n θ(1) n 2 3n 2 + 7n + 8 n 3 True c 1, c 2, n 0, n n 0 g(n) c1 f(n) g(n) c2 235 n 5
95
Order of Quantifiers f(n) = θ(g(n)) ?
96
Understand Quantifiers!!! One girl Could be a separate girl for each boy. SamMary BobBeth John Marilin Monro FredAnn SamMary BobBeth John Marilin Monro FredAnn
97
Order of Quantifiers No! It cannot be a different c 1 and c 2 for each n. f(n) = θ(g(n))
98
Other Notations Theta f(n) = θ(g(n))f(n) ≈ c g(n) BigOh f(n) = O(g(n))f(n) ≤ c g(n) Omega f(n) = Ω(g(n))f(n) ≥ c g(n) Little Oh f(n) = o(g(n))f(n) << c g(n) Little Omega f(n) = ω(g(n))f(n) >> c g(n)
99
BigOh Notation n 2 = O(n 3 ) n 3 = O(n 2 )
100
BigOh Notation O(n 2 ) = O(n 3 ) O(n 3 ) = O(n 2 ) Odd Notation f(n) = O(g(n)) Standard f(n) ≤ O(g(n)) Stresses one function dominating another. f(n) O(g(n)) Stress function is member of class.
101
The Time Complexity of an Algorithm Specifies how the running time depends on the size of the input.
102
Purpose?
103
Purpose To estimate how long a program will run. To estimate the largest input that can reasonably be given to the program. To compare the efficiency of different algorithms. To help focus on the parts of code that are executed the largest number of times. To choose an algorithm for an application.
104
Time Complexity Is a Function Specifies how the running time depends on the size of the input. A function mapping “size” of input “time” T(n) executed.
105
Definition of Time?
106
Definition of Time # of seconds (machine dependent). # lines of code executed. # of times a specific operation is performed (e.g., addition). Which?
107
Definition of Time # of seconds (machine dependent). # lines of code executed. # of times a specific operation is performed (e.g., addition). These are all reasonable definitions of time, because they are within a constant factor of each other.
108
Size of Input Instance? 83920
109
Size of Input Instance Size of paper # of bits # of digits Value - n = 2 in 2 - n = 17 bits - n = 5 digits - n = 83920 2’’ 83920 5 1’’ Which are reasonable?
110
Size of Input Instance Size of paper # of bits # of digits Value - n = 2 in 2 - n = 17 bits - n = 5 digits - n = 83920 Intuitive 2’’ 83920 5 1’’
111
Size of Input Instance Size of paper # of bits # of digits Value - n = 2 in 2 - n = 17 bits - n = 5 digits - n = 83920 Intuitive Formal 2’’ 83920 5 1’’
112
Size of Input Instance Size of paper # of bits # of digits Value - n = 2 in 2 - n = 17 bits - n = 5 digits - n = 83920 Intuitive Formal Reasonable # of bits = 3.32 * # of digits 2’’ 83920 5 1’’
113
Size of Input Instance Size of paper # of bits # of digits Value - n = 2 in 2 - n = 17 bits - n = 5 digits - n = 83920 Intuitive Formal Reasonable Unreasonable # of bits = log 2 (Value) Value = 2 # of bits 2’’ 83920 5 1’’
114
Two Example Algorithms Sum N array entries: A(1) + A(2) + A(3) + … Factor value N: Input N=5917 & Output N=97*61. Algorithm N/2, N/3, N/4, …. ? Time?
115
Two Example Algorithms Sum N array entries: A(1) + A(2) + A(3) + … Factor value N: Input N=5917 & Output N=97*61. Algorithm N/2, N/3, N/4, …. ? Time = N
116
Two Example Algorithms Sum N array entries: A(1) + A(2) + A(3) + … Factor value N: Input N=5917 & Output N=97*61. Algorithm N/2, N/3, N/4, …. ? Is this reasonable? Time = N
117
Two Example Algorithms Sum N array entries: A(1) + A(2) + A(3) + … Factor value N: Input N=5917 & Output N=97*61. Algorithm N/2, N/3, N/4, …. ? No! Time = N One is considered fast and the other slow!
118
Two Example Algorithms Sum N array entries: A(1) + A(2) + A(3) + … Factor value N: Input N=5917 & Output N=97*61. Algorithm N/2, N/3, N/4, …. ? Size of Input Instance?
119
Two Example Algorithms Sum N array entries: A(1) + A(2) + A(3) + … Factor value N: Input N=5917 & Output N=97*61. Algorithm N/2, N/3, N/4, …. ? size n = N size n = log N
120
Two Example Algorithms Sum N array entries: A(1) + A(2) + A(3) + … Factor value N: Input N=5917 & Output N=97*61. Algorithm N/2, N/3, N/4, …. ? Time as function of input size? size n = N size n = log N
121
Two Example Algorithms Sum N array entries: A(1) + A(2) + A(3) + … Factor value N: Input N=5917 & Output N=97*61. Algorithm N/2, N/3, N/4, …. ? Time = N = n Time = N = 2 n size n = N size n = log N
122
Two Example Algorithms Sum N array entries: A(1) + A(2) + A(3) + … Factor value N: Input N=5917 & Output N=97*61. Algorithm N/2, N/3, N/4, …. ? Linear vs Exponential Time! Time = N = n Time = N = 2 n size n = N size n = log N
123
Size of Input Instance? 14,23,25,30,31,52,62,79,88,98
124
Size of Input Instance # of elements - n = 10 elements 14,23,25,30,31,52,62,79,88,98 10
125
Size of Input Instance # of elements - n = 10 elements 14,23,25,30,31,52,62,79,88,98 10 Is this reasonable?
126
Size of Input Instance # of elements - n = 10 elements ~ Reasonable 14,23,25,30,31,52,62,79,88,98 10 If each element has size c # of bits = c * # of elements
127
Size of Input Instance # of elements - n = 10 elements Reasonable 14,23,25,30,31,52,62,79,88,98 10 If each element is in [1..n] each element has size log n # of bits = n log n ≈ n
128
Time Complexity Is a Function Specifies how the running time depends on the size of the input. A function mapping # of bits n needed to represent the input # of operations T(n) executed.
129
Which Input of size n? There are 2 n inputs of size n. Which do we consider for the time T(n)?
130
Which Input of size n? Typical Input Average Case Worst Case
131
Which Input of size n? Typical InputBut what is typical? Average CaseFor what distribution? Worst CaseTime for all inputs is bound. Easiest to compute
132
Time Complexity of Algorithm O(n 2 ): Prove that for every input of size n, the algorithm takes no more than cn 2 time. Ω(n 2 ): Find one input of size n, for which the algorithm takes at least this much time. θ (n 2 ): Do both. The time complexity of an algorithm is the largest time required on any input of size n.
133
Time Complexity of Problem O(n 2 ): Provide an algorithm that solves the problem in no more than this time. Ω(n 2 ): Prove that no algorithm can solve it faster. θ (n 2 ): Do both. The time complexity of a problem is the time complexity of the fastest algorithm that solves the problem.
134
Adding The Classic Techniques Evaluating ∑ i=1 f(i). n
135
Gauss ∑ i=1..n i = 1 + 2 + 3 +... + n = ? Arithmetic Sum
136
1+2+3+...+ n-1+n=S n+n-1+n-2+... +2+1=S (n+1) + (n+1) + (n+1) +... + (n+1) + (n+1) = 2S n (n+1) = 2S
137
1+2+3+...+ n-1+n=S n+n-1+n-2+... +2+1=S (n+1) + (n+1) + (n+1) +... + (n+1) + (n+1) = 2S n (n+1) = 2S
138
1+2+3+...+ n-1+n=S n+n-1+n-2+... +2+1=S (n+1) + (n+1) + (n+1) +... + (n+1) + (n+1) = 2S n (n+1) = 2S
139
1+2+3+...+ n-1+n=S n+n-1+n-2+... +2+1=S (n+1) + (n+1) + (n+1) +... + (n+1) + (n+1) = 2S n (n+1) = 2S
140
Let’s restate this argument using a geometric representation Algebraic argument
141
1 2........ n = number of white dots.
142
1 2........ n = number of white dots = number of yellow dots n....... 2 1
143
n+1 n+1 n+1 n+1 n+1 = number of white dots = number of yellow dots n n n n n n There are n(n+1) dots in the grid
144
n+1 n+1 n+1 n+1 n+1 = number of white dots = number of yellow dots n n n n n n Note = (# of terms · last term))
145
Gauss ∑ i=1..n i = 1 + 2 + 3 +... + n = (# of terms · last term) Arithmetic Sum True when ever terms increase slowly
146
∑ i=0..n 2 i = 1 + 2 + 4 + 8 +... + 2 n = ? Geometric Sum
148
∑ i=0..n 2 i = 1 + 2 + 4 + 8 +... + 2 n = 2 · last term - 1 Geometric Sum
149
∑ i=0..n r i = r 0 + r 1 + r 2 +... + r n = ? Geometric Sum
150
S Srrrr...rr S 1r S r1 r1 23nn1 n1 n1 1rrr... 23 r n Geometric Sum
151
∑ i=0..n r i r1 r1 n1 Geometric Sum When r>1?
152
∑ i=0..n r i r1 r1 n1 Geometric Sum θ(rn)θ(rn) Biggest Term When r>1
153
∑ i=0..n r i = r 0 + r 1 + r 2 +... + r n = (biggest term) Geometric Increasing True when ever terms increase quickly
154
∑ i=0..n r i Geometric Sum When r<1? 1 r n1
155
∑ i=0..n r i Geometric Sum 1 r n1 θ(1) When r<1 Biggest Term
156
∑ i=0..n r i = r 0 + r 1 + r 2 +... + r n = (1) Bounded Tail True when ever terms decrease quickly
157
∑ i=1..n 1 / i = 1 / 1 + 1 / 2 + 1 / 3 + 1 / 4 + 1 / 5 + …+ 1 / n = ? Harmonic Sum
158
f(i) = 1 ∑ i=1..n f(i) = n n Sum of Shrinking Function
159
f(i) = 1/2 i ∑ i=1..n f(i) = 2 Sum of Shrinking Function
160
f(i) = 1/i ∑ i=1..n f(i) = ? n Sum of Shrinking Function
161
Harmonic Sum
162
∑ i=1..n 1 / i = 1 / 1 + 1 / 2 + 1 / 3 + 1 / 4 + 1 / 5 + …+ 1 / n = (log(n)) Harmonic Sum
163
Approximating Sum by Integrating The area under the curve approximates the sum ∑ i=1..n f(i) ≈ ∫ x=1..n f(x) dx
164
Approximating Sum by Integrating ∫ x=1..n x c dx = 1 / c+1 n c+1 ∑ i=1..n i c ≈ Arithmetic Sums θ(# of terms · last term) True when ever terms increase slowly = θ(n c+1 )
165
Approximating Sum by Integrating ∫ x=1..n b x dx = 1 / ln(b) b n ∑ i=1..n b i ≈ Geometric Sums θ(last term) True when ever terms increase quickly = θ(b n )
166
Harmonic Sum Approximating Sum by Integrating
167
Problem: Integrating may be hard too.
168
Outline II) Math proofs of sums V) Ability to know the answer fast I) What is the sum Eg. ∑ i=1..n f(i) = ∑ i=1..n 1 / i 0.9999 =θ(n 0.0001 ) III) Pattern of sums ∑ i=1..n f(i) = θ(n · f(n)) IV) Intuition why this is the sum I flash it up If you follow great. If not don’t panic.
169
Adding Made Easy We will now classify (most) functions f(i) into four classes: –Geometric Like –Arithmetic Like –Harmonic –Bounded Tail
170
Adding Made Easy We will now classify (most) functions f(i) into four classes For each class, we will give an easy rule for approximating it’s sum θ( ∑ i=1..n f(i) )
171
Classifying Animals Vertebrates Birds Mammals Reptiles Fish Dogs Giraffe Mammal Complex social networks Dog Man’s best friend
172
Classifying Functions Functions Poly. Exp. 2 θ(n) ∑ i=1..n f(i) = θ(f(n)) 8 · 2 n / n 100 + n 3 θ(2 n / n 100 ) 8 · 2 n + n 3 n θ(1) 2 θ(n) θ(2n)θ(2n) f(n) = 8 · 2 n / n 100 + n 3 θ(2 n / n 100 ) ∑ i=1..n f(i) = θ(2 n / n 100 ) 2 0.5n << 2 n 8 · 2 n / n 100 + n 3 Significant Less significant Irrelevant
173
Adding Made Easy 11 1 2 3 4 Four Classes of Functions
174
Adding Made Easy
175
If the terms f(i) grow sufficiently quickly, then the sum will be dominated by the largest term. Silly example: 1+2+3+4+5+ 1,000,000,000 ≈ 1,000,000,000 f(i) 2 Ω(n) ∑ i=1..n f(i) = θ(f(n)) Geometric Like:
176
If the terms f(i) grow sufficiently quickly, then the sum will be dominated by the largest term. Classic example: ? f(i) 2 Ω(n) ∑ i=1..n f(i) = θ(f(n)) Geometric Like:
177
If the terms f(i) grow sufficiently quickly, then the sum will be dominated by the largest term. Classic example: ∑ i=1..n 2 i = 2 n+1 -1 ≈ 2 f(n) f(i) 2 Ω(n) ∑ i=1..n f(i) = θ(f(n)) Geometric Like:
178
If the terms f(i) grow sufficiently quickly, then the sum will be dominated by the largest term. For which functions f(i) is this true? How fast and how slow can it grow? f(i) 2 Ω(n) ∑ i=1..n f(i) = θ(f(n)) Geometric Like:
179
r1 r1 n1 θ( ) r n Last Term when r>1. ∑ i=1..n r i 1rrr... 23 r n θ(f(n)) ∑ i=1..n (1.0001) i ≈ 10,000 (1.0001) n = 10,000 f(n) Lower Extreme: Upper Extreme: ∑ i=1..n (1000) i ≈ 1.001(1000) n = 1.001 f(n) Recall, when f(n) = r i = 2 θ(n) f(i) 2 Ω(n) ∑ i=1..n f(i) = θ(f(n)) Geometric Like:
180
Because the constant is sooo big, the statement is just barely true. ∑ i=1..n (1.0001) i ≈ 10,000 (1.0001) n = 10,000 f(n) Lower Extreme: Upper Extreme: ∑ i=1..n (1000) i ≈ 1.001(1000) n = 1.001 f(n) f(i) 2 Ω(n) ∑ i=1..n f(i) = θ(f(n)) Geometric Like:
181
∑ i=1..n (1.0001) i ≈ 10,000 (1.0001) n = 10,000 f(n) Lower Extreme: Upper Extreme: ∑ i=1..n (1000) i ≈ 1.001(1000) n = 1.001 f(n) Even bigger? f(i) 2 Ω(n) ∑ i=1..n f(i) = θ(f(n)) Geometric Like:
182
2n2n 2i2i ∑ i=1..n 2 2 ≈ 2 2 = 1f(n) No Upper Extreme: Even bigger? ∑ i=1..n (1.0001) i ≈ 10,000 (1.0001) n = 10,000 f(n) Lower Extreme: f(i) 2 Ω(n) ∑ i=1..n f(i) = θ(f(n)) Geometric Like:
183
2n2n 2i2i ∑ i=1..n 2 2 ≈ 2 2 = 1f(n) No Upper Extreme: Functions in between? ∑ i=1..n (1.0001) i ≈ 10,000 (1.0001) n = 10,000 f(n) Lower Extreme: f(i) 2 Ω(n) ∑ i=1..n f(i) = θ(f(n)) Geometric Like:
184
∑ i=1..n 2 i = 2 · 2 n –2 = 2 1 + 2 2 + 2 3 + 2 4 +…+ 2 n 8 · [ ] 8·8· 8·8· 8·8· 8·8· 8·8· 8·8· = θ( 2 n ) 1 100 2 100 3 100 4 100 n 100 i 100 n 100 + i 3 + 1 3 + 2 3 + 3 3 + 4 3 + n 3 Dominated by the largest term. = θ(f(n)) f(n) = 2 n 8·8· n 100 + n 3 = θ( 2 n ) n 100 f(i) 2 Ω(n) ∑ i=1..n f(i) = θ(f(n)) Geometric Like: n 100 ≈
185
f(i) 2 Ω(n) ∑ i=1..n f(i) = θ(f(n)) Geometric Like: f(n) = 2 n 8·8· n 100 ∑ i=1..n f(i) f(n) c · f(n) f(i) · f(n) f(i) · f(i +1 ) EasyHard (i +1 ) 100 i 100 2 = (1 + 1 / i ) 100 1 2 1.9 = 8 · 2 (i+1) (i +1 ) 100 f(i +1 ) f(i) 8·2i8·2i i 100 = 1/.51 · f(i +1 ) f(i)
186
f(i) 2 Ω(n) ∑ i=1..n f(i) = θ(f(n)) Geometric Like: f(n) = 2 n 8·8· n 100 ∑ i=1..n f(i) f(n) c · f(n) f(i) · f(n) · f(i +2 ) · f(i +1 ) f(i) · f(i +1 ) f(i) · f(i +3 ) .51 (n-i) ·f(i +(n-i) ) .51 (n-i) ·f( n ) f(i) .51 (n-i) ·f( n ) Eg. i = n, f(n) .51 (n-n) ·f( n ) 1·f( n ) i = 0, f(0) .51 n ·f( n )
187
f(i) 2 Ω(n) ∑ i=1..n f(i) = θ(f(n)) Geometric Like: f(n) = 2 n 8·8· n 100 ∑ i=1..n f(i) f(n) c · f(n) ∑ i=1..n f(i) ∑ i=1..n.51 (n-i) ·f( n ) = θ(1) · f(n) f(i) · f(n) · f(i +1 ) f(i) f(i) .51 (n-i) ·f( n ) = [∑ i=1..n.51 (n-i) ] · f( n )
188
Functions Poly. Exp. 2 θ(n) ∑ i=1..n f(i) = θ(f(n)) 8 · 2 n / n 100 + n 3 θ(2 n / n 100 ) 8 · 2 n + n 3 n θ(1) 2 θ(n) θ(2n)θ(2n) f(n) = 8 · 2 n / n 100 + n 3 θ(2 n / n 100 ) ∑ i=1..n f(i) = θ(2 n / n 100 ) 2 0.5n << 2 n 8 · 2 n / n 100 + n 3 Significant Less significant Irrelevant f(i) 2 Ω(n) ∑ i=1..n f(i) = θ(f(n)) Geometric Like:
189
If f(n) = c b an n d log e (n) c ? a ? b ? d ? e ? f(n) = Ω, θ ? then ∑ i=1..n f(i) = θ(f(n)). 2 Ω(n) > 0 0 1 (- , ) f(i) 2 Ω(n) ∑ i=1..n f(i) = θ(f(n)) Geometric Like:
190
f(i) 2 Ω(n) ∑ i=1..n f(i) = θ(f(n)) Geometric Like:
191
All functions in 2 Ω(n) ? Maybe not. f(i) 2 Ω(n) ∑ i=1..n f(i) = θ(f(n)) Geometric Like:
192
Functions that oscillate continually do not have the property. f(i) 2 Ω(n) ∑ i=1..n f(i) = θ(f(n)) Geometric Like:
193
Functions expressed with +, -, , , exp, log do not oscillate continually. They are well behaved for sufficiently large n. These do have the property. f(i) 2 Ω(n) ∑ i=1..n f(i) = θ(f(n)) Geometric Like:
194
Adding Made Easy Done
195
Adding Made Easy
196
If most of the terms f(i) have roughly the same value, then the sum is roughly the number of terms, n, times this value. Silly example: 1,001 + 1,002 + 1,003 + 1,004 + 1,005 ≈ 5 · 1,000 f(i) = n θ(1)-1 ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like:
197
If most of the terms f(i) have roughly the same value, then the sum is roughly the number of terms, n, times this value. Another silly example: ∑ i=1..n 1 = n · 1 f(i) = n θ(1)-1 ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like:
198
If most of the terms f(i) have roughly the same value, then the sum is roughly the number of terms, n, times this value. Is the statement true for this function? ∑ i=1..n i = 1 + 2 + 3 +... + n f(i) = n θ(1)-1 ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like:
199
If most of the terms f(i) have roughly the same value, then the sum is roughly the number of terms, n, times this value. Is the statement true for this function? ∑ i=1..n i = 1 + 2 + 3 +... + n The terms are not roughly the same. f(i) = n θ(1)-1 ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like:
200
But half the terms are roughly the same. ∑ i=1..n i = 1 +... + n/2 +... + n f(i) = n θ(1)-1 ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like:
201
But half the terms are roughly the same and the sum is roughly the number terms, n, times this value ∑ i=1..n i = 1 +... + n/2 +... + n ∑ i=1..n i = θ(n · n) f(i) = n θ(1)-1 ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like:
202
Is the statement true for this function? ∑ i=1..n i 2 = 1 2 + 2 2 + 3 2 +... + n 2 Even though, the terms are not roughly the same. f(i) = n θ(1)-1 ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like:
203
Again half the terms are roughly the same. ∑ i=1..n i = 1 2 +... + (n/2) 2 +... + n 2 1 / 4 n 2 f(i) = n θ(1)-1 ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like:
204
Again half the terms are roughly the same. ∑ i=1..n i = 1 2 +... + (n/2) 2 +... + n 2 1 / 4 n 2 ∑ i=1..n i 2 = θ(n · n 2 ) f(i) = n θ(1)-1 ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like:
205
∑ i=1..n f(i) ≈ area under curve f(i) = n θ(1)-1 ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like:
206
area of small square ∑ i=1..n f(i) ≈ area under curve area of big square f(i) = n θ(1)-1 ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like:
207
n / 2 · f( n / 2 ) = area of small square ∑ i=1..n f(i) ≈ area under curve area of big square = n · f(n) f(i) = n θ(1)-1 ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like:
208
θ(n · f(n)) = n / 2 · f( n / 2 ) = area of small square ∑ i=1..n f(i) ≈ area under curve area of big square = n · f(n) f(i) = n θ(1)-1 ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like:
209
θ(n · f(n)) = n / 2 · f( n / 2 ) = area of small square ∑ i=1..n f(i) ≈ area under curve area of big square = n · f(n) ? f(i) = n θ(1)-1 ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like:
210
∑ i=1..n i 2 = 1 2 + 2 2 + 3 2 +... + n 2 f(i) = n θ(1)-1 ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like: f(i) = n 2 f( n / 2 ) = θ(f(n)) The key property is = ?
211
The key property is f( n / 2 ) = (n/2) 2 = 1 / 4 n 2 = θ( n 2 ) = θ(f(n)) ∑ i=1..n i 2 = 1 2 + 2 2 + 3 2 +... + n 2 f(i) = n θ(1)-1 ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like: f(i) = n 2 = θ(n·f(n)) = θ(n · n 2 )
212
∑ i=1..n f(i) = ? f(i) = n θ(1)-1 ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like: f(i) = n θ(1)
213
∑ i=1..n i r = 1 r + 2 r + 3 r +... + n r f(i) = n θ(1)-1 ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like: f(i) = n θ(1) f( n / 2 ) = θ(f(n)) The key property is
214
f( n / 2 ) = (n/2) r = 1 / 2 r n r = θ( n r ) = θ(f(n)) ∑ i=1..n i r = 1 r + 2 r + 3 r +... + n r f(i) = n θ(1)-1 ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like: = θ(n·f(n)) = θ(n · n r ) f(i) = n θ(1)
215
∑ i=1..n 2 i = 2 1 + 2 2 + 2 3 +... + 2 n f(i) = n θ(1)-1 ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like: f(i) = n θ(1) f( n / 2 ) = θ(f(n)) The key property is
216
∑ i=1..n 2 i = 2 1 + 2 2 + 2 3 +... + 2 n f( n / 2 ) = 2 (n/2) = θ( 2 n ) = θ(f(n)) f(i) = n θ(1)-1 ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like: f(i) = n θ(1) = θ(n·f(n)) = θ(n · 2 n )
217
∑ i=1..n 1 = n · 1 = n · f(n) Middle Extreme: Upper Extreme: ∑ i=1..n i 1000 = 1 / 1001 n 1001 = 1 / 1001 n · f(n) All functions in between. f(i) = n θ(1)-1 ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like:
218
Adding Made Easy Half done
219
f(i) = 1 ∑ i=1..n f(i) = n n Sum of Shrinking Function
220
f(i) = ? ∑ i=1..n f(i) = n 1/2 n Sum of Shrinking Function 1/i 1/2
221
f(i) = 1/i ∑ i=1..n f(i) = log n n Sum of Shrinking Function
222
f(i) = 1/2 i ∑ i=1..n f(i) = 2 Sum of Shrinking Function
223
If most of the terms f(i) have roughly the same value, then the sum is roughly the number of terms, n, times this value. Does the statement hold for functions f(i) that shrink? f(i) = n θ(1)-1 ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like:
224
If most of the terms f(i) have roughly the same value, then the sum is roughly the number of terms, n, times this value. ∑ i=1..n 1 / i = 1 / 1 + 1 / 2 + 1 / 3 + 1 / 4 + 1 / 5 + … + 1 / n Does the statement hold for the Harmonic Sum? f(i) = n θ(1)-1 ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like:
225
Does the statement hold for the Harmonic Sum? ∑ i=1..n 1 / i = 1 / 1 + 1 / 2 + 1 / 3 + 1 / 4 + 1 / 5 + … + 1 / n ∑ i=1..n f(i) = ? θ(n · f(n)) f(i) = n θ(1)-1 ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like:
226
Does the statement hold for the Harmonic Sum? ∑ i=1..n 1 / i = 1 / 1 + 1 / 2 + 1 / 3 + 1 / 4 + 1 / 5 + … + 1 / n ∑ i=1..n f(i) θ(n · f(n)) = ∑ i=1..n 1 / i = ? f(i) = n θ(1)-1 ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like:
227
Does the statement hold for the Harmonic Sum? ∑ i=1..n 1 / i = 1 / 1 + 1 / 2 + 1 / 3 + 1 / 4 + 1 / 5 + … + 1 / n ∑ i=1..n f(i) θ(n · f(n)) = ∑ i=1..n 1 / i =θ(log n) f(i) = n θ(1)-1 ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like:
228
Does the statement hold for the Harmonic Sum? ∑ i=1..n 1 / i = 1 / 1 + 1 / 2 + 1 / 3 + 1 / 4 + 1 / 5 + … + 1 / n ∑ i=1..n f(i) = θ(n · f(n)) = ∑ i=1..n 1 / i =θ(log n) ? f(i) = n θ(1)-1 ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like:
229
Does the statement hold for the Harmonic Sum? ∑ i=1..n 1 / i = 1 / 1 + 1 / 2 + 1 / 3 + 1 / 4 + 1 / 5 + … + 1 / n ∑ i=1..n f(i) = θ(n · f(n)) = ∑ i=1..n 1 / i =θ(log n) θ(1) = θ(n · 1 / n ) f(i) = n θ(1)-1 ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like:
230
Does the statement hold for the Harmonic Sum? ∑ i=1..n 1 / i = 1 / 1 + 1 / 2 + 1 / 3 + 1 / 4 + 1 / 5 + … + 1 / n ∑ i=1..n f(i) = θ(n · f(n)) = ∑ i=1..n 1 / i =θ(log n) θ(1) = θ(n · 1 / n ) ≠ No the statement does not hold! f(i) = n θ(1)-1 ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like:
231
Adding Made Easy not included
232
Does the statement hold for the almost Harmonic Sum? ∑ i=1..n 1 / i 0.9999 Shrinks slightly slower than harmonic. f(i) = n θ(1)-1 ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like:
233
Does the statement hold for the almost Harmonic Sum? ∑ i=1..n 1 / i 0.9999 ∑ i=1..n f(i) = θ(n · f(n)) = ∑ i=1..n 1 / i 0.9999 = ? f(i) = n θ(1)-1 ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like:
234
Does the statement hold for the almost Harmonic Sum? ∑ i=1..n 1 / i 0.9999 ∑ i=1..n f(i) = θ(n · f(n)) = ∑ i=1..n 1 / i 0.9999 =θ(n 0.0001 ) f(i) = n θ(1)-1 ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like:
235
Does the statement hold for the almost Harmonic Sum? ∑ i=1..n 1 / i 0.9999 ∑ i=1..n f(i) = θ(n · f(n)) = ∑ i=1..n 1 / i 0.9999 =θ(n 0.0001 ) ? f(i) = n θ(1)-1 ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like:
236
Does the statement hold for the almost Harmonic Sum? ∑ i=1..n 1 / i 0.9999 ∑ i=1..n f(i) = θ(n · f(n)) = ∑ i=1..n 1 / i 0.9999 =θ(n 0.0001 ) θ(n 0.0001 ) = θ(n · 1 / n 0.9999 ) f(i) = n θ(1)-1 ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like:
237
Does the statement hold for the almost Harmonic Sum? ∑ i=1..n 1 / i 0.9999 ∑ i=1..n f(i) = θ(n · f(n)) = ∑ i=1..n 1 / i 0.9999 =θ(n 0.0001 ) θ(n 0.0001 ) = θ(n · 1 / n 0.9999 ) = The statement does hold! f(i) = n θ(1)-1 ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like:
238
∑ i=1..n 1 = n · 1 = n · f(n) Middle Extreme: Lower Extreme: ∑ i=1..n 1 / i 0.9999 = θ(n 0.0001 ) = θ(n · f(n)) All functions in between. f(i) = n θ(1)-1 ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like:
239
∑ i=1..n 1 = n · 1 = n · f(n) Middle Extreme: Lower Extreme: ∑ i=1..n 1 / i 0.9999 = θ(n 0.0001 ) = θ(n · f(n)) Upper Extreme: ∑ i=1..n i 1000 = 1 / 1001 n 1001 = 1 / 1001 n · f(n) f(i) = n θ(1)-1 ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like:
240
Arithmetic Like If f(n) = c b an n d log e (n) c ? a ? b ? d ? e ? f(n) = Ω, θ ? then ∑ i=1..n f(i) = θ(n · f(n)). n -1+θ(1) > 0 0 or b 1 > -1 (- , ) (For +, -, , , exp, log functions f(n)) Conclusion
241
Adding Made Easy Done
242
Adding Made Easy Harmonic
243
Harmonic Sum ∑ i=1..n 1 / i = 1 / 1 + 1 / 2 + 1 / 3 + 1 / 4 + 1 / 5 + …+ 1 / n = (log(n))
244
Adding Made Easy
245
If the terms f(i) decrease towards zero sufficiently quickly, then the sum will be a constant. The classic example ∑ i=0..n 1 / 2 i = 1 + 1 / 2 + 1 / 4 + 1 / 8 + … = 2. f(n) n -1-Ω(1) ∑ i=1..n f(i) = θ(1) Bounded Tail:
246
If f(i) decays even faster, then the tail of the sum is more bounded. 2i2i ∑ i=1..n 2 2 = θ(1). 1 f(n) n -1-Ω(1) ∑ i=1..n f(i) = θ(1) Bounded Tail:
247
Upper Extreme: ∑ i=1..n 1 / i 1.0001 = θ(1) f(n) n -1-Ω(1) ∑ i=1..n f(i) = θ(1) Bounded Tail:
248
Upper Extreme: ∑ i=1..n 1 / i 1.0001 = θ(1) No Lower Extreme: 2i2i ∑ i=1..n 2 2 = θ(1). 1 All functions in between. f(n) n -1-Ω(1) ∑ i=1..n f(i) = θ(1) Bounded Tail:
249
Bounded Tail If f(n) = c b an n d log e (n) c ? a ? b ? d ? e ? f(n) = Ω, θ ? then ∑ i=1..n f(i) = θ(1). > 0 (- , ) Conclusion or b 1 c n d log e (n) c a b b an
250
Bounded Tail If f(n) = c n d log e (n) c ? a b = 1 d ? e ? f(n) = Ω, θ ? then ∑ i=1..n f(i) = θ(1). n θ(1)-1 > 0 < -1 (- , ) Conclusion
251
Adding Made Easy Done
252
Adding Made Easy Missing Functions 1 / nlogn logn / n
253
Adding Made Easy Geometric Like: If f(n) 2 Ω(n), then ∑ i=1..n f(i) = θ(f(n)). Arithmetic Like: If f(n) = n θ(1)-1, then ∑ i=1..n f(i) = θ(n · f(n)). Harmonic: If f(n) = 1 / n, then ∑ i=1..n f(i) = log e n + θ(1). Bounded Tail: If f(n) n -1-Ω(1), then ∑ i=1..n f(i) = θ(1). ( For +, -, , , exp, log functions f(n) ) This may seem confusing, but it is really not. It should help you compute most sums easily.
254
Recurrence Relations T(1) = 1 T(n) = a T(n/b) + f(n)
255
Recurrence Relations Time of Recursive Program procedure Eg(int n) if(n 1) then put “Hi” else loop i=1..f(n) put “Hi” loop i=1..a Eg(n/b) Recurrence relations arise from the timing of recursive programs. Let T(n) be the # of “Hi”s on an input of “size” n.
256
procedure Eg(int n) if(n 1) then put “Hi” else loop i=1..f(n) put “Hi” loop i=1..a Eg(n/b) Given size 1, the program outputs T(1)=1 Hi’s. Recurrence Relations Time of Recursive Program
257
procedure Eg(int n) if(n 1) then put “Hi” else loop i=1..f(n) put “Hi” loop i=1..a Eg(n/b) Given size n, the stackframe outputs f(n) Hi’s. Recurrence Relations Time of Recursive Program
258
procedure Eg(int n) if(n 1) then put “Hi” else loop i=1..f(n) put “Hi” loop i=1..a Eg(n/b) Recursing on a instances of size n/b generates T(n/b) “Hi”s. Recurrence Relations Time of Recursive Program
259
procedure Eg(int n) if(n 1) then put “Hi” else loop i=1..f(n) put “Hi” loop i=1..a Eg(n/b) Recursing a times generates a·T(n/b) “Hi”s. Recurrence Relations Time of Recursive Program
260
procedure Eg(int n) if(n 1) then put “Hi” else loop i=1..f(n) put “Hi” loop i=1..a Eg(n/b) For a total of T(1) = 1 T(n) = a·T(n/b) + f(n) “Hi”s. Recurrence Relations Time of Recursive Program
261
X = 2133 Y = 2312 ac = bd = (a+b)(c+d) = XY = MULT(X,Y): If |X| = |Y| = 1 then RETURN XY Break X into a;b and Y into c;d e = MULT(a,c) and f =MULT(b,d) RETURN e 10 n + (MULT(a+b, c+d) – e - f) 10 n/2 + f Stack of Stack Frames Stack Frame: A particular execution of one routine on one particular input instance.
262
X = 2133 Y = 2312 ac = ? bd = (a+b)(c+d) = XY = MULT(X,Y): If |X| = |Y| = 1 then RETURN XY Break X into a;b and Y into c;d e = MULT(a,c) and f =MULT(b,d) RETURN e 10 n + (MULT(a+b, c+d) – e - f) 10 n/2 + f Stack of Stack Frames
263
X = 2133 Y = 2312 ac = ? bd = (a+b)(c+d) = XY = X = 21 Y = 23 ac = bd = (a+b)(c+d) = XY = MULT(X,Y): If |X| = |Y| = 1 then RETURN XY Break X into a;b and Y into c;d e = MULT(a,c) and f =MULT(b,d) RETURN e 10 n + (MULT(a+b, c+d) – e - f) 10 n/2 + f Stack of Stack Frames
264
X = 2133 Y = 2312 ac = ? bd = (a+b)(c+d) = XY = X = 21 Y = 23 ac = ? bd = (a+b)(c+d) = XY = MULT(X,Y): If |X| = |Y| = 1 then RETURN XY Break X into a;b and Y into c;d e = MULT(a,c) and f =MULT(b,d) RETURN e 10 n + (MULT(a+b, c+d) – e - f) 10 n/2 + f Stack of Stack Frames
265
X = 2133 Y = 2312 ac = ? bd = (a+b)(c+d) = XY = X = 21 Y = 23 ac = ? bd = (a+b)(c+d) = XY = X = 2 Y = 2 XY= MULT(X,Y): If |X| = |Y| = 1 then RETURN XY Break X into a;b and Y into c;d e = MULT(a,c) and f =MULT(b,d) RETURN e 10 n + (MULT(a+b, c+d) – e - f) 10 n/2 + f Stack of Stack Frames
266
X = 2133 Y = 2312 ac = ? bd = (a+b)(c+d) = XY = X = 21 Y = 23 ac = ? bd = (a+b)(c+d) = XY = X = 2 Y = 2 XY = 4 MULT(X,Y): If |X| = |Y| = 1 then RETURN XY Break X into a;b and Y into c;d e = MULT(a,c) and f =MULT(b,d) RETURN e 10 n + (MULT(a+b, c+d) – e - f) 10 n/2 + f Stack of Stack Frames
267
X = 2133 Y = 2312 ac = ? bd = (a+b)(c+d) = XY = X = 21 Y = 23 ac = 4 bd = (a+b)(c+d) = XY = MULT(X,Y): If |X| = |Y| = 1 then RETURN XY Break X into a;b and Y into c;d e = MULT(a,c) and f =MULT(b,d) RETURN e 10 n + (MULT(a+b, c+d) – e - f) 10 n/2 + f Stack of Stack Frames
268
X = 2133 Y = 2312 ac = ? bd = (a+b)(c+d) = XY = X = 21 Y = 23 ac = 4 bd = ? (a+b)(c+d) = XY = MULT(X,Y): If |X| = |Y| = 1 then RETURN XY Break X into a;b and Y into c;d e = MULT(a,c) and f =MULT(b,d) RETURN e 10 n + (MULT(a+b, c+d) – e - f) 10 n/2 + f Stack of Stack Frames
269
X = 2133 Y = 2312 ac = ? bd = (a+b)(c+d) = XY = X = 21 Y = 23 ac = 4 bd = ? (a+b)(c+d) = XY = X = 1 Y = 3 XY = 3 MULT(X,Y): If |X| = |Y| = 1 then RETURN XY Break X into a;b and Y into c;d e = MULT(a,c) and f =MULT(b,d) RETURN e 10 n + (MULT(a+b, c+d) – e - f) 10 n/2 + f Stack of Stack Frames
270
X = 2133 Y = 2312 ac = ? bd = (a+b)(c+d) = XY = X = 21 Y = 23 ac = 4 bd = 3 (a+b)(c+d) = XY = MULT(X,Y): If |X| = |Y| = 1 then RETURN XY Break X into a;b and Y into c;d e = MULT(a,c) and f =MULT(b,d) RETURN e 10 n + (MULT(a+b, c+d) – e - f) 10 n/2 + f Stack of Stack Frames
271
X = 2133 Y = 2312 ac = ? bd = (a+b)(c+d) = XY = X = 21 Y = 23 ac = 4 bd = 3 (a+b)(c+d) = ? XY = MULT(X,Y): If |X| = |Y| = 1 then RETURN XY Break X into a;b and Y into c;d e = MULT(a,c) and f =MULT(b,d) RETURN e 10 n + (MULT(a+b, c+d) – e - f) 10 n/2 + f Stack of Stack Frames
272
X = 2133 Y = 2312 ac = ? bd = (a+b)(c+d) = XY = X = 21 Y = 23 ac = 4 bd = 3 (a+b)(c+d) = ? XY = X = 3 Y = 5 XY = 15 MULT(X,Y): If |X| = |Y| = 1 then RETURN XY Break X into a;b and Y into c;d e = MULT(a,c) and f =MULT(b,d) RETURN e 10 n + (MULT(a+b, c+d) – e - f) 10 n/2 + f Stack of Stack Frames
273
X = 2133 Y = 2312 ac = ? bd = (a+b)(c+d) = XY = X = 21 Y = 23 ac = 4 bd = 3 (a+b)(c+d) = 15 XY = ? MULT(X,Y): If |X| = |Y| = 1 then RETURN XY Break X into a;b and Y into c;d e = MULT(a,c) and f =MULT(b,d) RETURN e 10 n + (MULT(a+b, c+d) – e - f) 10 n/2 + f Stack of Stack Frames
274
X = 2133 Y = 2312 ac = ? bd = (a+b)(c+d) = XY = X = 21 Y = 23 ac = 4 bd = 3 (a+b)(c+d) = 15 XY = 483 MULT(X,Y): If |X| = |Y| = 1 then RETURN XY Break X into a;b and Y into c;d e = MULT(a,c) and f =MULT(b,d) RETURN e 10 n + (MULT(a+b, c+d) – e - f) 10 n/2 + f Stack of Stack Frames
275
X = 2133 Y = 2312 ac = 483 bd = (a+b)(c+d) = XY = MULT(X,Y): If |X| = |Y| = 1 then RETURN XY Break X into a;b and Y into c;d e = MULT(a,c) and f =MULT(b,d) RETURN e 10 n + (MULT(a+b, c+d) – e - f) 10 n/2 + f Stack of Stack Frames
276
X = 2133 Y = 2312 ac = 483 bd = ? (a+b)(c+d) = XY = MULT(X,Y): If |X| = |Y| = 1 then RETURN XY Break X into a;b and Y into c;d e = MULT(a,c) and f =MULT(b,d) RETURN e 10 n + (MULT(a+b, c+d) – e - f) 10 n/2 + f Stack of Stack Frames
277
X = 2133 Y = 2312 ac = 483 bd = ? (a+b)(c+d) = XY = X = 33 Y = 12 ac = ? bd = (a+b)(c+d) = XY = 15 MULT(X,Y): If |X| = |Y| = 1 then RETURN XY Break X into a;b and Y into c;d e = MULT(a,c) and f =MULT(b,d) RETURN e 10 n + (MULT(a+b, c+d) – e - f) 10 n/2 + f Stack of Stack Frames
278
X = 2133 Y = 2312 ac = 483 bd = ? (a+b)(c+d) = XY = X = 33 Y = 12 ac = ? bd = (a+b)(c+d) = XY = 15 X = 3 Y = 1 XY = 3 MULT(X,Y): If |X| = |Y| = 1 then RETURN XY Break X into a;b and Y into c;d e = MULT(a,c) and f =MULT(b,d) RETURN e 10 n + (MULT(a+b, c+d) – e - f) 10 n/2 + f Stack of Stack Frames
279
X = 2133 Y = 2312 ac = 483 bd = ? (a+b)(c+d) = XY = X = 33 Y = 12 ac = 3 bd = ? (a+b)(c+d) = XY = 15 MULT(X,Y): If |X| = |Y| = 1 then RETURN XY Break X into a;b and Y into c;d e = MULT(a,c) and f =MULT(b,d) RETURN e 10 n + (MULT(a+b, c+d) – e - f) 10 n/2 + f Stack of Stack Frames
280
X = 2133 Y = 2312 ac = 483 bd = ? (a+b)(c+d) = XY = X = 33 Y = 12 ac = 3 bd = ? (a+b)(c+d) = XY = 15 X = 3 Y = 2 XY = 6 MULT(X,Y): If |X| = |Y| = 1 then RETURN XY Break X into a;b and Y into c;d e = MULT(a,c) and f =MULT(b,d) RETURN e 10 n + (MULT(a+b, c+d) – e - f) 10 n/2 + f Stack of Stack Frames
281
X = 2133 Y = 2312 ac = 483 bd = ? (a+b)(c+d) = XY = X = 33 Y = 12 ac = 3 bd = 6 (a+b)(c+d) = ? XY = 15 MULT(X,Y): If |X| = |Y| = 1 then RETURN XY Break X into a;b and Y into c;d e = MULT(a,c) and f =MULT(b,d) RETURN e 10 n + (MULT(a+b, c+d) – e - f) 10 n/2 + f Stack of Stack Frames
282
X = 2133 Y = 2312 ac = 483 bd = ? (a+b)(c+d) = XY = X = 33 Y = 12 ac = 3 bd = 6 (a+b)(c+d) = ? XY = 396 MULT(X,Y): If |X| = |Y| = 1 then RETURN XY Break X into a;b and Y into c;d e = MULT(a,c) and f =MULT(b,d) RETURN e 10 n + (MULT(a+b, c+d) – e - f) 10 n/2 + f Stack of Stack Frames An so on ….
283
X = 2133 Y = 2312 ac = 483 bd = 396 (a+b)(c+d) = 1890 XY = 4931496 X = 21 Y = 23 ac = 4 bd = 3 (a+b)(c+d) = 15 XY = 483 X = 33 Y = 12 ac = 3 bd = 6 (a+b)(c+d) = 18 XY = 396 X = 54 Y = 35 ac = 15 bd = 20 (a+b)(c+d) = 72 XY = 1890 X = 2 Y = 2 XY=4 X = 1 Y = 3 XY=3 X = 3 Y = 5 XY=15 X = 3 Y = 1 XY=3 X = 3 Y = 2 XY=6 X = 6 Y = 3 XY=18 X = 5 Y = 3 XY=15 X = 4 Y = 5 XY=20 X = 9 Y = 8 XY=72 MULT(X,Y): If |X| = |Y| = 1 then RETURN XY Break X into a;b and Y into c;d e = MULT(a,c) and f =MULT(b,d) RETURN e 10 n + (MULT(a+b, c+d) – e - f) 10 n/2 + f Tree of Stack Frames
284
Solving Technique 1 Guess and Verify Recurrence Relation: T(1) = 1 & T(n) = 4T(n/2) + n Guess: G(n) = 2n 2 – n Verify: Left Hand SideRight Hand Side T(1) = 2(1) 2 – 1 T(n) = 2n 2 – n 1 4T(n/2) + n = 4 [2( n / 2 ) 2 – ( n / 2 )] + n = 2n 2 – n
285
Recurrence Relation: T(1) = 1 & T(n) = 4T(n/2) + n Guess: G(n) = an 2 + bn + c Verify: Left Hand SideRight Hand Side T(1) = a+b+c T(n) = an 2 +bn+c 1 4T(n/2) + n = 4 [a ( n / 2 ) 2 + b ( n / 2 ) +c] + n = an 2 +(2b+1)n + 4c Solving Technique 2 Guess Form and Calculate Coefficients
286
Recurrence Relation: T(1) = 1 & T(n) = 4T(n/2) + n Guess: G(n) = an 2 + bn + 0 Verify: Left Hand SideRight Hand Side T(1) = a+b+c T(n) = an 2 +bn+c 1 4T(n/2) + n = 4 [a ( n / 2 ) 2 + b ( n / 2 ) +c] + n = an 2 +(2b+1)n + 4c Solving Technique 2 Guess Form and Calculate Coefficients c=4c c=0
287
Recurrence Relation: T(1) = 1 & T(n) = 4T(n/2) + n Guess: G(n) = an 2 - 1n + 0 Verify: Left Hand SideRight Hand Side T(1) = a+b+c T(n) = an 2 +bn+c 1 4T(n/2) + n = 4 [a ( n / 2 ) 2 + b ( n / 2 ) +c] + n = an 2 +(2b+1)n + 4c Solving Technique 2 Guess Form and Calculate Coefficients b=2b+1 b=-1
288
Recurrence Relation: T(1) = 1 & T(n) = 4T(n/2) + n Guess: G(n) = an 2 - 1n + 0 Verify: Left Hand SideRight Hand Side T(1) = a+b+c T(n) = an 2 +bn+c 1 4T(n/2) + n = 4 [a ( n / 2 ) 2 + b ( n / 2 ) +c] + n = an 2 +(2b+1)n + 4c Solving Technique 2 Guess Form and Calculate Coefficients a=a
289
Recurrence Relation: T(1) = 1 & T(n) = 4T(n/2) + n Guess: G(n) = 2n 2 - 1n + 0 Verify: Left Hand SideRight Hand Side T(1) = a+b+c T(n) = an 2 +bn+c 1 4T(n/2) + n = 4 [a ( n / 2 ) 2 + b ( n / 2 ) +c] + n = an 2 +(2b+1)n + 4c Solving Technique 2 Guess Form and Calculate Coefficients a+b+c=1 a-1+0=1 a=2
290
Recurrence Relation: T(1) = 1 & T(n) = aT(n/b) + f(n) Solving Technique 3 Approximate Form and Calculate Exponent which is bigger? Guess
291
Recurrence Relation: T(1) = 1 & T(n) = aT(n/b) + f(n) Guess: aT(n/b) << f(n) Simplify: T(n) f(n) Solving Technique 3 Calculate Exponent In this case, the answer is easy. T(n) = (f(n))
292
Recurrence Relation: T(1) = 1 & T(n) = aT(n/b) + f(n) Guess: aT(n/b) >> f(n) Simplify: T(n) aT(n/b) Solving Technique 3 Calculate Exponent In this case, the answer is harder.
293
Recurrence Relation: T(1) = 1 & T(n) = aT(n/b) Guess: G(n) = cn Verify: Left Hand SideRight Hand Side T(n) = cn aT(n/b) = a [c ( n / b ) ] = c a b n Solving Technique 3 Calculate Exponent ( log a / log b ) = cn 1 = a b - b = a log b = log a = log a / log b
294
Recurrence Relation: T(1) = 1 & T(n) = 4T(n/2) Guess: G(n) = cn Verify: Left Hand SideRight Hand Side T(n) = cn aT(n/b) + f(n) = c [a ( n / b ) ] = c a b n Solving Technique 3 Calculate Exponent 1 = a b - b = a log b = log a = log a / log b ( log a / log b ) = cn ( log 4 / log 2 ) = cn 2
295
Recurrence Relation: T(1) = 1 & T(n) = aT(n/b) + f(n) Solving Technique 3 Calculate Exponent If bigger then T(n) = (f(n)) If bigger then ( log a / log b ) T(n) = (n ) And if aT(n/b) f(n) what is T(n) then?
296
Technique 4: Decorate The Tree T(n) = a T(n/b) + f(n) f(n) T(n/b) T(n) = T(1) T(1) = 1 1 = a
297
f(n) T(n/b) T(n) = a
298
f(n) T(n/b) T(n) = a f(n/b) T(n/b 2 ) a
299
f(n) T(n) = a f(n/b) T(n/b 2 ) a f(n/b) T(n/b 2 ) a f(n/b) T(n/b 2 ) a f(n/b) T(n/b 2 ) a
300
11111111111111111111111111111111...... 111111111111111111111111111111111 f(n) T(n) = a f(n/b) T(n/b 2 ) a f(n/b) T(n/b 2 ) a f(n/b) T(n/b 2 ) a f(n/b) T(n/b 2 ) a
301
Evaluating: T(n) = aT(n/b)+f(n) Level 0 1 2 i h
302
Evaluating: T(n) = aT(n/b)+f(n) Level Instance size 0 1 2 i h
303
Evaluating: T(n) = aT(n/b)+f(n) Level Instance size 0n 1 2 i h
304
Evaluating: T(n) = aT(n/b)+f(n) Level Instance size 0n 1 n/b 2 i h
305
Evaluating: T(n) = aT(n/b)+f(n) Level Instance size 0n 1 n/b 2 n/b 2 i h
306
Evaluating: T(n) = aT(n/b)+f(n) Level Instance size 0n 1 n/b 2 n/b 2 i n/b i h n/b h
307
Evaluating: T(n) = aT(n/b)+f(n) Level Instance size 0n 1 n/b 2 n/b 2 i n/b i h n/b h
308
Evaluating: T(n) = aT(n/b)+f(n) Level Instance size 0n 1 n/b 2 n/b 2 i n/b i h n/b h = 1 base case
309
Evaluating: T(n) = aT(n/b)+f(n) Level Instance size 0n 1 n/b 2 n/b 2 i n/b i h n/b h = 1
310
Evaluating: T(n) = aT(n/b)+f(n) Level Instance size 0n 1 n/b 2 n/b 2 i n/b i h = log n / log b n/b h = 1 b h = n h log b = log n h = log n / log b
311
Evaluating: T(n) = aT(n/b)+f(n) Level Instance size Work in stack frame 0n 1 n/b 2 n/b 2 i n/b i h = log n / log b 1
312
Evaluating: T(n) = aT(n/b)+f(n) Level Instance size Work in stack frame 0n f(n) 1 n/bf(n/b) 2 n/b 2 f(n/b 2 ) i n/b i f(n/b i ) h = log n / log b 1T(1)
313
Evaluating: T(n) = aT(n/b)+f(n) Level Instance size Work in stack frame # stack frames 0n f(n) 1 n/bf(n/b) 2 n/b 2 f(n/b 2 ) i n/b i f(n/b i ) h = log n / log b n/b h T(1)
314
Evaluating: T(n) = aT(n/b)+f(n) Level Instance size Work in stack frame # stack frames 0n f(n) 1 1 n/bf(n/b) a 2 n/b 2 f(n/b 2 ) a2a2 i n/b i f(n/b i ) aiai h = log n / log b n/b h T(1) ahah
315
Evaluating: T(n) = aT(n/b)+f(n) Level Instance size Work in stack frame # stack frames 0n f(n) 1 1 n/bf(n/b) a 2 n/b 2 f(n/b 2 ) a2a2 i n/b i f(n/b i ) aiai h = log n / log b n/b h T(1) ahah
316
Evaluating: T(n) = aT(n/b)+f(n) Level Instance size Work in stack frame # stack frames 0n f(n) 1 1 n/bf(n/b) a 2 n/b 2 f(n/b 2 ) a2a2 i n/b i f(n/b i ) aiai h = log n / log b n/b h T(1) ahah a h = a = n log n / log b log a / log b
317
Evaluating: T(n) = aT(n/b)+f(n) Level Instance size Work in stack frame # stack frames Work in Level 0n f(n) 1 1 n/bf(n/b) a 2 n/b 2 f(n/b 2 ) a2a2 i n/b i f(n/b i ) aiai h = log n / log b n/b h T(1) n log a / log b
318
Evaluating: T(n) = aT(n/b)+f(n) Level Instance size Work in stack frame # stack frames Work in Level 0n f(n) 1 1 · f(n) 1 n/bf(n/b) a a · f(n/b) 2 n/b 2 f(n/b 2 ) a2a2 a 2 · f(n/b 2 ) i n/b i f(n/b i ) aiai a i · f(n/b i ) h = log n / log b n/b h T(1) n log a / log b n · T(1) log a / log b Total Work T(n) = ∑ i=0..h a i f(n/b i )
319
Evaluating: T(n) = aT(n/b)+f(n) = ∑ i=0..h a i f(n/b i ) If a Geometric Sum ∑ i=0..n x i θ(max(first term, last term))
320
Evaluating: T(n) = aT(n/b)+f(n) Level Instance size Work in stack frame # stack frames Work in Level 0n f(n) 1 1 · f(n) 1 n/bf(n/b) a a · f(n/b) 2 n/b 2 f(n/b 2 ) a2a2 a 2 · f(n/b 2 ) i n/b i f(n/b i ) aiai a i · f(n/b i ) h = log n / log b n/b h T(1) n log a / log b n · T(1) log a / log b Dominated by Top Level or Base Cases
321
Evaluating: T(n) = aT(n/b)+f(n) Is the sum Geometric? Simplify by letting f(n) = n c log k n T(n) = ∑ i=0..h a i f(n/b i ) = ∑ i=0..h a i (n/b i ) c log k (n/b i ) = n c ∑ i=0..h 2 [log a - c log b] · i log k (n/b i ) Geometrically IncreasingArithmetic SumGeometrically Decreasing Sum = θ(last term) = θ( ) Sum = θ(any term # terms) = θ(f(n) log n) Sum = θ(first term) = θ(f(n)). log a - c log b < 0log a - c log b = 0log a - c log b < 0 c < log a / log b c = log a / log b & k<-1 c = log a / log b & k>-1 c > log a / log b n log a / log b (n/..) c = n c a i = 2 [log a]·i (.. /b i ) c = 2 [-c log b]·i = n c ∑ i=0..h 2 -d i log k (n/b i )
322
Evaluating: T(n) = aT(n/b)+f(n) Is the sum Geometric? Simplify by letting f(n) = n c log k n T(n) = ∑ i=0..h a i f(n/b i ) = ∑ i=0..h a i (n/b i ) c log k (n/b i ) = n c ∑ i=0..h 2 [log a - c log b] · i log k (n/b i ) Geometrically IncreasingArithmetic SumGeometrically Decreasing Sum = θ(last term) = θ( ) Sum = θ(any term # terms) = θ(f(n) log n) Sum = θ(first term) = θ(f(n)). log a - c log b < 0log a - c log b = 0log a - c log b < 0 c < log a / log b c = log a / log b & k<-1 c = log a / log b & k>-1 c > log a / log b n log a / log b k =-1 log k ( n /b i ) = 1 / (logn - i logb) 1 / i (backwards) = n c ∑ i=0..h 2 0 i log k (n/b i ) (back wards) de
323
Evaluating: T(n) = aT(n/b)+f(n) Is the sum Geometric? Simplify by letting f(n) = n c log k n T(n) = ∑ i=0..h a i f(n/b i ) = ∑ i=0..h a i (n/b i ) c log k (n/b i ) = n c ∑ i=0..h 2 [log a - c log b] · i log k (n/b i ) Geometrically IncreasingArithmetic SumGeometrically Decreasing Sum = θ(last term) = θ( ) Sum = θ(any term # terms) = θ(f(n) log n) Sum = θ(first term) = θ(f(n)). log a - c log b < 0log a - c log b = 0log a - c log b < 0 c < log a / log b c = log a / log b & k<-1 c = log a / log b & k>-1 c > log a / log b n log a / log b = n c ∑ i=0..h 2 +d i log k (n/b i )
324
Evaluating: T(n) = 4T(n/2)+ n 3 / log 5 n
325
Time for top level?: Evaluating: T(n) = 4T(n/2)+ n 3 / log 5 n
326
Time for top level: f(n) = n 3 / log 5 n Time for base cases?: Evaluating: T(n) = 4T(n/2)+ n 3 / log 5 n
327
Time for top level: f(n) = n 3 / log 5 n Time for base cases: Evaluating: T(n) = 4T(n/2)+ n 3 / log 5 n θ(n ) = log a / log b θ(n ) log ? / log ?
328
Time for top level: f(n) = n 3 / log 5 n Time for base cases: Evaluating: T(n) = 4T(n/2)+ n 3 / log 5 n θ(n ) = log a / log b θ(n ) = ? log 4 / log 2
329
Time for top level: f(n) = n 3 / log 5 n Time for base cases: Dominated?: c = ? Evaluating: T(n) = 4T(n/2)+ n 3 / log 5 n θ(n ) = log a / log b θ(n ) = θ(n 2 ) log 4 / log 2 log a / log b = ?
330
Time for top level: f(n) = n 3 / log 5 n Time for base cases: Dominated?: c = 3 > 2 = log a / log b Evaluating: T(n) = 4T(n/2)+ n 3 / log 5 n θ(n ) = log a / log b θ(n ) = θ(n 2 ) log 4 / log 2 Hence, T(n) = ?
331
Time for top level: f(n) = n 3 / log 5 n Time for base cases: Dominated?: c = 3 > 2 = log a / log b Evaluating: T(n) = 4T(n/2)+ n 3 / log 5 n θ(n ) = log a / log b θ(n ) = θ(n 2 ) log 4 / log 2 Hence, T(n) = θ(top) = θ(f(n)) = θ(n 3 / log 5 n ).
332
Time for top level: f(n) = 2 n Time for base cases: Dominated?: c = ? > 2 = log a / log b Evaluating: T(n) = 4T(n/2)+ 2 n θ(n ) = log a / log b θ(n ) = θ(n 2 ) log 4 / log 2 Hence, T(n) = θ(top) = θ(f(n)) = θ(2 n ). bigger >big The time is even more dominated by the top level of recursion
333
Time for top level: f(n) = n log 5 n Time for base cases: Dominated?: c = ? 2 = log a / log b Evaluating: T(n) = 4T(n/2)+ n log 5 n θ(n ) = log a / log b θ(n ) = θ(n 2 ) log 4 / log 2 Hence, T(n) = ? 1< = θ(base cases) = θ(n ) = θ(n 2 ). log a / log b
334
Time for top level: f(n) = log 5 n Time for base cases: Dominated?: c = ? 2 = log a / log b Evaluating: T(n) = 4T(n/2)+ log 5 n θ(n ) = log a / log b θ(n ) = θ(n 2 ) log 4 / log 2 Hence, T(n) = ? 0< = θ(base cases) = θ(n ) = θ(n 2 ). log a / log b
335
Time for top level: f(n) = n 2 Time for base cases: Dominated?: c = ? 2 = log a / log b Evaluating: T(n) = 4T(n/2)+ n 2 θ(n ) = log a / log b θ(n ) = θ(n 2 ) log 4 / log 2 Hence, T(n) = ? 2= = θ(f(n) log(n) ) = θ(n 2 log(n) ).
336
Time for top level: f(n) = n 2 log 5 n Time for base cases: Dominated?: c = 2 = 2 = log a / log b Evaluating: T(n) = 4T(n/2)+ n 2 log 5 n θ(n ) = log a / log b θ(n ) = θ(n 2 ) log 4 / log 2 k = ? 5 ? Hence, T(n) = ? > -1 = θ(f(n) log(n) ) = θ(n 2 log 6 (n) ).
337
Time for top level: f(n) = n 2 / log 5 n Time for base cases: Dominated?: c = 2 = 2 = log a / log b Evaluating: T(n) = 4T(n/2)+ n 2 / log 5 n θ(n ) = log a / log b θ(n ) = θ(n 2 ) log 4 / log 2 k = ? Hence, T(n) = ? -5 ?< -1 = θ(base cases) = θ(n ) = θ(n 2 ). log a / log b
338
Time for top level: f(n) = n 2 / log n Time for base cases: Dominated?: c = 2 = 2 = log a / log b Evaluating: T(n) = 4T(n/2)+ n 2 / log n θ(n ) = log a / log b θ(n ) = θ(n 2 ) log 4 / log 2 k = ? Hence, T(n) = ? -1 ?= -1 = θ(n c loglog n ) = θ(n 2 loglog n ). Did not do before.
339
Sufficiently close to: T(n) = 4T(n/2)+ n 3 = θ(n 3 ). T 2 (n) = ? Evaluating: T 2 (n) = 4 T 2 (n/2+n 1/2 )+ n 3 θ(n 3 ).
340
Evaluating: T(n) = aT(n-b)+f(n) h = ? n-hb n-ib n-2b n-b T(0) f(n-ib) f(n-2b) f(n-b) f(n) n Work in Level # stack frames Work in stack frame Instance size a aiai a2a2 a 1 n/bn/b a · T(0) a i · f(n-ib) a 2 · f(n-2b) a · f(n-b) 1 · f(n) n/bn/b |base case| = 0 = n-hb h = n / b i 2 1 0 Level Likely dominated by base cases Exponential
341
Evaluating: T(n) = 1T(n-b)+f(n) h = ? Work in Level # stack frames Work in stack frame Instance size 1 1 1 1 1 f(0) f(n-ib) f(n-2b) f(n-b) f(n) n-b n n-hb n-ib n-2b T(0) f(n-ib) f(n-2b) f(n-b) f(n) h = n / b i 2 1 0 Level Total Work T(n) = ∑ i=0..h f(b·i) = θ(f(n)) or θ(n · f(n))
342
Math Review: Exponents X A X B = X A+B (not X AB !!) X A / X B = X A-B (X A ) B = X AB X A + X A = 2X A 2 A + 2 A = 2 A+1
343
Logarithms Definition: X A = B if and only if log X B = A (x is the “base” of the logarithm). –Example: 10 2 = 100 means log 10 100 = 2. Theorems log X AB = log X A + log X B log X A/B = log X A – log X B log X A B = B log X A
344
Logarithms… Theorem: log A B = log C B / log C A Proof: Let X = log C B, Y = log C A, and Z = log A B. By the definition of logarithm: C X = B, C Y = A, and A Z = B. Thus C X = B = A Z = C YZ, X = YZ, Z = X/Y.
345
Logarithms… The notation for logs can be confusing. There are two alternatives: –log 2 (x) = log (log x) or –log 2 (x) = (log x) 2 Generally, we use the 2 nd definition. Note: log 2 (x) is not (log x 2 ) Note: log is not a multiplicative entity, it is a function.
346
End
347
Restart Relevant Mathematics Iterative Algorithms
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.