Download presentation
Presentation is loading. Please wait.
Published byMarilynn Bradley Modified over 9 years ago
1
FTIR Spectroscopy of the n4 bands of 14NO3 and 15NO3
(Okayama Univ., Hiroshima City Univ.) R. Fujimori, N. Shimizu, J. Tang, K. Kawaguchi, T. Ishiwata
2
Infrared study of NO3 K+1 Four fundamental bands n3+n4. n1 ; inactive n2 ; Friedl and Sander(1987) n3 ; very weak intensity n4 ; Only Matrix isolation observation (Beckers, Willner, Jacox. 2009) 1127 1492 K+2 n4. K+3 K Gr. DK=3 CD Present study ; first gas-phase spectroscopy of n4 Determination of C0 from DK=3 Combination Difference ( selection rule DK = ±1 for n4, combined with other measurements) Calculation of inertial defect
3
Experimental setup 0.006 cm-1 resolution Effective path length :48-m
Liq. He Si bolometer
4
Detector part – Silicon Bolometer Dewar temperature 4.2 K to 1.7 K
5
Monitoring of NO3 concentration by HeNe laser
Absorption spectrum of the NO3 B-X band Sander, J. Phys. Chem. (1986) discharge Off 10 % absorption Absorption of HeNe Laser (3-m path length) discharge On
6
Observed spectrum of 14NO3 radical
7
Analysis 1. n4 band 114 lines PP(N,K) K=5 ~ 29
2. DK=3 ground state combination differences n4 (365), n3+n4-n4 (1127), n3+n4 (1492) 3. n4 combination differences n3+n4-n4 (1127), n3+n4 (1492) 4. DK=0 ground state combination differences n3+n4 (1492) rQ(N+1,K) and rR(N,K) pQ(N-1,K) and pP(N,K)
8
Combination differences for DK=3 and n4
n3 + n4 13 14 n3 hot band of 15NO3 was newly observed 1127 cm-1 1492 cm-1 n4 13 14 n4 combination differences 365 cm-1 band Gr DK = 3 combination differences K = 12 15
9
Statistical weight in Analysis
1. n4 band 114 lines PP(N,K) K=5 ~ 29 Weight = 1 (accuracy cm-1) 2. DK=3 ground state combination differences n4 (365), n3+n4-n4 (1127), n3+n4 (1492) Weight = 1/3 3. n4 combination differences n3+n4-n4 (1127), n3+n4 (1492) Weight = 1/2 4. DK=0 ground state combination differences n3+n4 (1492) Including diode laser data
10
14NO3 and 15NO3 molecular constants(1)
(Ground state) 14NO 15NO3 present previous present B (86) (63) (14) C (57) [ ] (89) DN ☓ (13) (12) (25) DNK☓ (26) (27) (65) DK ☓ (18) [0.1034] (52) ebb (20) (13) (26) ecc (14) [0.0] [ ] DKx105(calc) sfit= cm-1
11
14NO3 and 15NO3 molecular constants(2)
(n4 state) 14NO3 15NO3 present previous present n (35) (43) (59) B (41) (60) (90) C (28) (40) (36) DN ☓105 0.0924(16) (23) (44) DNK☓ (41) (58) (13) DK ☓ (28) (40) (97) Cz (14) (15) (23) hN☓ (21) (28) (13) hK☓ (27) (36) (13) q (15) (22) (66) aeff (44) (36) (50) ebb (36) (36) (53) ecc (26) [0.0] (33)
12
Inertial defect of planar symmetric top molecule
harmonic frequencies and z3 Jagod and Oka (1990, JMS) Check of vibrational assignment
13
Inertial defect in BF3 (example, data Maki et al. JMS )
Dobs=Ic-2 Ib amu Å2 v1 v2 v3 v obs calc obs-calc % % % % %(max)
14
Inertial Defects D (amu Å2) of NO3
D=Ic - 2Ib Obs. Calc. O-C Gr (0001) (1001) ( (0011) x3 + x4 = 0 (D3h ) n1 (1050), n2 (762) n3 (1127), n4 (365) 8 % 0.7 % 21 % 24 % n4 n1+n4 3n4 n3+n4 1492 band x3 + x4 ≠ 0 not in D3h (Jahn-Tellar effect ) large p34 [splitting in K=1], eaa-ebb≠0 In this calc, if n3 = 1492, D3 calc = 0.237 Disagreement with observed D (35%)
15
Relative infrared intensity
n3+n4(1492 band) = 1.00 band Obs. Calc.(Stanton) ν4 (365 cm-1) 3ν4 (1173) ν1+ν4 (1413) ν3+ν4 (1492) ν3+2ν4(1927) J. F. Stanton, Molecular Physics, (2009) Agreement within factor 2 except for ν3+2ν4
16
Summary 1. Measurement of the n4 band of NO3 Present 365.7871 cm-1
Matrix cm-1 Isotope shift (14N - 15N) = cm-1 2. Determination of C0 (67) cm-1 14NO3 (11) cm-1 15NO3 3. Calculations of Inertial defect
17
Inertial defect in SO3 (example, data Maki et al. JMS )
v1 v2 v3 v obs calc obs-calc Dobs=Ic-2 Ib amu Å2
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.