Download presentation
Presentation is loading. Please wait.
Published byJocelin Stewart Modified over 9 years ago
1
INPE Advanced Course on Compact Objects Course IV: Accretion Processes in Neutron Stars & Black Holes Ron Remillard Kavli Center for Astrophysics and Space Research Massachusetts Institute of Technology http://xte.mit.edu/~rr/inpe_IV.1.ppt
2
Course IV Outline 1. Basic Elements of X-ray Binary Systems 2. Different States of Black-Hole Binaries 3. Weakly Magnetized Neutron-Star Binaries (Atolls and Z sources) 4. Periodic Variability: Orbits and Pulsars 5. Aperiodic Variability: Bursts, Flares & Instability Cycles
3
IV.1 Basic Elements of X-ray Binary Systems Introduction X-ray Astronomy: window to hot and violent universe Endpoints of Stellar Evolution Science Goals for Observations of X-ray Binaries Properties of Neutron Stars and Black Holes Physical Properties Mass Determinations Surveys of Different Types of Compact Objects Fundamentals of Accretion Physics The Accretion Disk Relativistic Disk Models for Black Holes Non-thermal Radiation Processes Questions for General Relativity
4
X-ray Photons Wien’s Displacement Law (1893) (wavelength ( ) of max. energy flux in ( )) --- 2 keV is hot ! T = 5 x 10 7 o K / max (Angstroms) Wilhelm Carl Werner Otto Fritz Franz Wien X-rays: Photons 0.6-12 Angstroms Energies 20-1 keV Thermal Equivalent kT = 4 to 80 million o K Heating mechanisms non-thermal processes synchrotron radiation (high energy e- in B field) inverse Compton (photon upscatter by high energy e-)
5
Window for Astrophysics from Space Photon transmission through the Galaxy X-rays: recover long-distance view at E > 1 keV
6
X-ray Telescopes in Space Mirrors (grazing incidence) + gratings? vs. Collimators (metal baffles) + Coded Masks (slit plate + shadows) Spectrometers: Semiconductors (Si); gas (Xe); CdZnTe pixels for hard-X Chandra (NASA Great Observatory) Rossi X-ray Timing Explorer (NASA)XMM-Newton (European Space Agency
7
Collapsed Remnants of Old Stars Initial Star Compact Object Support? Observed? < 8 M o white dwarf degenerate isolated ; binaries; (0.4-1.3 M o ; Earth-size) gas pressure cataclysmic variables 8-25 M o neutron star strong nuclear force radio pulsars ; hot- (1.4-2.0 M o ; R~10 km) isolated; X-ray pulsars; X-ray bursters > 25 M o black hole no classical forces accreting binaries (3-16 M o ; event horizon) quantum gravity? (X-ray sources) Milky Way Today: 10 8 -10 9 BHs ; ~10 9 NSs ; > 10 10 WDs (Timmes, Woosley & Weaver 1996; Adams and Laughlin 1996)
8
Collapsed Remnants of Old Stars Compact Object ; GMmR -1 / mc 2 Boundary white dwarf 0.6 ; 6x10 8 10 -4 crash neutron star 1.4 ; 10 6 0.2 crash black hole 10 ; 3x10 6 0.5 event horizon
9
Binary Evolution for Accreting Compact Objects Scenario 1: Roche Lobe overflow More massive star dies first Binary separation can shrink (magnetic braking and/or grav. radiation) Companion may evolve and grow Common for Low-Mass (Companion) X-ray Binaries (LMXB) Scenario 2: Stellar Wind Accretion More massive star dies first Stellar wind captured (with possible inner accretion disk) Common for High-Mass (Companion) X-ray Binaries (HMXB)
10
Measuring Masses of Compact Objects Dynamical study: compact object x and companion star c (for binary period, P, and inclination angle, i ) Kepler’s 3 rd Law: 4 2 (a x + a c ) 3 = GP 2 (M x + M c ) center of mass:M x a x = M c a c radial velocity amplitude K c = 2 a c sin i P -1 “Mass Function”: f(M) = P K 3 / 2 G = M x sin 3 (i) / (1 + M c / M x ) 2 < M x Dynamical Black Hole: M x > 3 M o (maximum for a neutron star) BH Candidates: no pulsations + no X-ray bursts + properties of BHBs
11
Compact Object Mass Neutron Star Limit: 3 M o (dP/d ) 0.5 < c Rhoades & Ruffini 1974 Chitre & Hartle 1976 Kalogera & Baym 1996 Black Holes (BH) M x = 3-18 M o Neutron Stars (NS) (X-ray & radio pulsars) M x ~ 1.4 M o
12
Transients with Low-Mass Companions: Best M x Optical images of A0620-00; BH at 0.9 kpc quiescence outburst 1975 P K 3 / 2 G = M x sin 3 (i) / (1 + M c /M x ) 2
13
Optical Study of BH Binary in Quiescence A0620-00 (X-ray Nova Mon 1975) f(M) = 2.72 +/- 0.06 M o P = 0.323014(1) days K4V companion i ~ 60 o M x = 7 +/- 3 M o
14
Optical Study of BHB in Quiescence Optical Photometry of Gravity-distorted K4 star Model( i, f star, M c /M x, T c, k limb, k grav ) [residual disk; star spots] Other techniques: Rotational broadening of absorption lines Doppler curve of emission lines (residual disk) …… worse problems
15
Inventory of Black Hole Binaries BH Binary: Mass from binary analyses BH Candidate: BHB X-ray properties + no pulsations + no X-ray bursts Dynamical BHBs BH Candidates Milky Way 18 25 LMC 2 0 local group 1 (M33) (? many ULXs) --------------------- --------------------- --------------------- total 21 25 + ? Transients 17 23 + ?
16
Black Holes in the Milky Way 18 BHBs in Milky Way 16 fairly well constrained (Jerry Orosz) Scaled, tilted, and colored for surface temp. of companion star.
17
Inventory of Neutron-Star X-ray Sources SubtypeTypical Characteristics Number Transients Atoll Sources Low-B; LMXBs; X-ray bursts; like BHBs ~100 ~60 Msec X-ray Pulsars 182-599 Hz ; atoll-like X-spectra 88 Z-sources high- L x LMXBs; unique spectral/timing var. 91 HMXB or Pulsarshard spectrum + cutoff ; most are X-pulsars ~90 ~50 MagnetarsSoft Gama Repeaters (4 + 1 cand.) 147 Anomalous X-ray Pul;sars (8 + 1 cand.) Other Isolated Pulsars young SNRs; X-detect radio pulsars 70? 0? ---------- --------- Total 291 126 Cataloged radio pulsars number approaching 2000?
18
X-ray Transients in the Milky Way RXTE ASM: 47 Persistent Sources > 20 mCrab (1.5 ASM c/s) 80 Galactic Transients (1996-2007; some recurrent) Transients: timeline of science opportunities.
19
Science Goals for Observing X-ray Binaries Locate stellar black holes and neutron stars 100% of BHs from X-ray sources ; special applications for X-selected NSs Measure Physical Properties of Compact Objects Mass (M x ) Spin NS: pulsations BH: infer a * = cJ / GM x 2 BH event horizon compare NS accretion (hard surface) vs. BH (none?) NS surface B field ( 10 15 G) NS Interior (Eq. of state; burst models ; oscillation modes) Understand Accretion Physics origin of different X-ray states ; accretion disk and R in ; transient jets ; hard X-rays (hot Comptonizing corona) ; quasi-periodic oscillations primary variables: M x, dM/dt, spin ; other variables: i, spin, surface B (NS), global B, plasma ?
20
Accretion Disks and the Inner Disk Boundary Keplerian Orbits for sample m E(r)= U+K = 0.5 U(r) = -0.5 G M x m r -1 Particle dE/dr = 0.5 G M x m r -2 dL(r) ~ d (dE/dr) = 0.5 G M x m r -2 dt dL(r) 2 r dr T 4 T(r) r -3/4 Real physical model: conserve angular momentum (viscosity); outflow?, rad. efficiency ( ) 3-D geometry (disk thickness, hydrostatic eq., radiative transfer) B-fields and instabilities GR effects (Innermost Stable Circular Orbit, grav. redshift, beaming)
21
Toward a Complete Model of Accretion Disks 1.Shakura & Sunyaev -disk (1973) viscosity scales with total pressure shear stress: t r = P (P = P gas + P rad ) thin disk: h << R high radiative efficiency (local L release) Makishima et al. 1986: apply to obs. T(r) r -3/4 ; L = 4 R in 2 T 4 2. MRI: Magneto-Rotational Instability (Balbus &Hawley 1991) MHD simulations: plasma eddies with local B, are sheared in a rotating disk; this process transports angular momentum outward. Continued MHD accretion simulations in General Relativity (e.g. Hawley & Balbus 2002; DeVilliers, Hawley, & Krolik 2003; McKinney & Gammie 2004) no dissipation (radiation) included in GR MHD simulations, thus far problem : no independent measure of mass accretion rate
22
Black Holes: Innermost Stable Circular Orbit (ISCO) BH spin a * : 0.0 0.5 0.75 0.9 0.98 1.0 ----------------------------------------------------- ISCO (R g / GM x /c 2 ): 6.0 4.2 3.2 2.3 1.6 1.0 Neutron Stars Surface (and ? R NS < R ISCO ?) Boundary Layer (2 nd heat source) Magnetic Field Affects (Alfven Radius; control of inner accretion flow ; accretion focus at polar cap pulsars) Inner Disk Boundary for Accretion Disks
23
Emissivity vs. Radius in the Accretion Disk GR Applications for Thermal State Shakura & Sunyaev 1973; Makishima et al. 1986;Page & Thorne 1974; Zhang, Cui, & Chen 1997 Gierlinski et al. 2001; Li et al. 2005
24
Relativistic Accretion Disk: Spectral Models GR Applications for Thermal State e.g. kerrbb in xspec Li et al. 2005; Davis et al. 2005 Integrate over disk and B (T) Correct for GR effects (grav-z, Doppler, grav-focusing) Correct for radiative transfer
25
Method Application Comments Images impulsive BJB jets two cases (Chandra) Spectrum Model Continuum accretion disk BH: infer a * if known M x ; d Model Hard X-rays hot corona / Comptonization two types: (1) jet ; (2) ??? Spectral Lines BH: broad Fe K- (6.4 keV) corona fluoresces inner disk emission profile M x ; a * ‘’ high-ioniz. absorption lines seen in a few BHs variable, magnetized disk? ‘’ redshifted absorption line 1 NS?: surface grav. redshift Tools for X-ray Data Analysis
26
Method Application Comments Timing Period Search NS: X-ray Pulsars several types; measure dP/dt and pulse-profiles(E) ‘’ NS or BH binary orbits wind-caused for HMXB some LMXB eclipsers, dippers ‘’ Long-term Periods precessing disks ; ? slow waves in dM/dt ? Quasi-Period Oscillations BH and NS rich in detail low (0.1-50 Hz) common in some states high (50-1300 Hz) NS: var. ; BH steady harmonics very slow (10 -6 to 10 -2 Hz) some BH: disk instability cycles Tools for X-ray Data Analysis
27
MethodApplication Comments Timing Aperiodic Phenoma ‘’Type I X-ray Bursts in NS thermonucl. explosions on surface ID as NS ; oscillations spin ; infer distance ; physical models improving ‘’Type II X-ray Bursts two NS cases ; cause ?? ‘’Superbursts (many hours) C detonation in subsurface ? Probe NS interiors ‘’Giant flares in Magnetars ? crust shifts + B reconnection Progress?: coordinated timing / spectral analyses Tools for X-ray Data Analysis
28
Defining X-ray States in BHB? Thermal State: inner accretion disk X-ray states Lecture IV.2
29
Searches for the Event Horizon Game: model infall to hard surface (NS) vs. none (BH) Topic Black Hole Neutron StarModel Quiescent X-ray State Measure L x (erg s -1 ) 10 31 few 10 32 advection Thermonuclear Bursts Measure rate (at 0.1 L Edd )none 5x10 -5 burst model Thermal X-ray State X-ray Spectrum max. f disk > 90% 80%boundary layer (Narayan 2004 ; Narayan & Heyl 2002; Remillard et al. 2006; Done & Gierlinski 2003)
30
References: Reviews “Compact Stellar X-ray Sources”, eds. Lewin & van der Klis (2006) ; 16 chapters; some on ‘astro-ph’ preprint server: http://xxx.lanl.gov/formhttp://xxx.lanl.gov/form Overview of DiscoveryPsaltis astro-ph/0410536 Rapid X-ray Variability van der Klis astro-ph/0410551 X-ray BurstsStrohmayer & Bildsten astro-ph/0301544 Black Hole BinariesMcClintock & Remillard astro-ph/0306213 Optical ObservationsCharles & Coe astro-ph/0308020 Fast Transients, FlashesHeise & in ‘t Zand --- Isolated Neutron StarsKaspi, Roberts, & Harding astro-ph/0402136 JetsFender astro-ph/0303339 Accretion TheoryKing astro-ph/0301118 MagnetarsWood & Thompson astro-ph/0406133
31
References: Reviews Other Reviews: Remillard & McClintock 2006, "X-Ray Properties of Black-Hole Binaries", ARAA, 44, 49 Done. Gierlinski, & Kubota 2007, “Modelling the behaviour of accretion flows in X-ray binaries”, A&A Reviews, in press, astro-ph/07080148 X-ray Binary Catalogs: (HMXB) Liu, van Paradijs, & van den Heuvel 2006, A&A, 455, 1165 (LMXB) Liu, van Paradijs, & van den Heuvel 2007, A&A, 469, 807
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.