Download presentation
Presentation is loading. Please wait.
Published byAshley Lawrence Modified over 9 years ago
1
Troitsk Institute for Innovation and Fusion Research
Experimental study of PFCs erosion and eroded material deposition under ITER-like transient loads at plasma gun facility QSPA N. Klimov1, V. Podkovyrov1, A. Zhitlukhin1, D. Kovalenko1, J. Linke2, G.Pintsuk2, I. Landman3, S. Pestchanyi3, B. Bazylev3, G. Janeschitz3, A. Loarte4, M. Merola4, T. Hirai4, G. Federici5, B. Riccardi5, I. Mazul6, R. Giniyatulin6, L. Khimchenko7, V.Koidan7 1SRC RF TRINITI, ul. Pushkovykh, vladenie 12, , Troitsk, Moscow Region, Russia 2Forschungszentrum Jülich GmbH, EURATOM Association, D Jülich, Germany 3Karlsruhe Institute of Technology, P.O. Box 3640, Karlsruhe, Germany (KIT) 4ITER Organization, St. Paul-lez-Durance, F Cadarache, France 5Fusion for Energy, ITER Department, Josep Pla, 2, Torres Diagonal Litoral B3, Barcelona, Spain 6Efremov Institute, , St. Petersburg, Russia 7RRC «Kurchatov Institute», Moscow, Russia Troitsk Institute for Innovation and Fusion Research F4E RRC Kurchatov Institute Efremov Institute I-7, G. Pintsuk, Forschungszentrum Julich PSI, 2010
2
Outline Experimental facilities, targets, diagnostics
ELMs simulation experiments at low heat loads Mixed materials and erosion products investigation Conclusion I-7, G. Pintsuk, Forschungszentrum Julich PSI, 2010
3
Experimental facilities Quasistationary plasma accelerator
QSPA-T facility QSPA-Be facility QSPA plasma parameters (ELMs): Heat load ÷ 5 MJ/m2 Pulse duration 0.1 ÷ 0.6 ms Plasma stream diameter 6 cm Ion impact energy 0.1 ÷ 1.0 keV Electron temperature < 10 eV Plasma density ÷ 1023 m-3 QSPA plasma gun 1 – coil of pulse electromagnetic gas valve; 2 – valve disk; 3 – volume of pulse valve; 4 – isolator; 5 – gas supply tube; 6 – cathode; 7 – anode. QSPA facility provides adequate pulse durations and energy densities. It is applied for erosion measurement in conditions relevant to ITER ELMs and disruptions I-7, G. Pintsuk, Forschungszentrum Julich PSI, 2010
4
Experimental conditions Target design
3(7) 2 5 20 W – grain orientation or CFC - pitch fibre orientation Cu SS CFC SNECMA NB31 150 19.5 60 9.5 W (>99,96%) и W-1% La2О3 Be-clad and Be-coated CFC SNECMA NB31 pure W or W-1% La2O3 Special 31 ITER-like targets (6 CFC, 3 pure W, 6 W-1%La2O3, and 16 Ве) were designed and manufactured by EU were pre-characterized by Forschungszentrum Jülich (Germany) by optical / electron microscopy and laser-profilometry I-7, G. Pintsuk, Forschungszentrum Julich PSI, 2010
5
Experimental conditions Scheme of PFCs testing
View of the target on a heater Plasma flow Castellated tungsten (or CFC) target 60O Absorbed energy density profile Target orientation Target was preheated up to 500O C Plasma pulse duration was t = 0.5 ms Plasma-surface angle α = 300 Total number of pulses was up to 1000 for ELMs experiments and up to 10 for disruptions experiments Absorbed energy density at plasma axis was 0.5÷1.5 MJ/m2 in ELMs experiments 2.3 MJ/m2 in disruption experiments I-7, G. Pintsuk, Forschungszentrum Julich PSI, 2010
6
Diagnostics Measurements of absorbed energy density distribution
Shield frame 110 195 Cells with thermocouples 25 180 90 15 X Y Plasma facing surface (CFC) 10x10 mm2 Surface connected to thermocouple Copper layer Schemes and views of the calorimeters Absorbed energy density distribution was measured by means of special CFC and tungsten target-like calorimeters I-7, G. Pintsuk, Forschungszentrum Julich PSI, 2010
7
Experimental conditions Absorbed energy density distribution
Typical energy density profile on CFC surface The energy density distribution on CFC surface,% Typical energy density profile on W surface The energy density distribution on W surface,% I-7, G. Pintsuk, Forschungszentrum Julich PSI, 2010
8
Diagnostics Plasma parameters measurements PFCs erosion measurement
Products erosion study Pressure probe System of plasma stream velocity measurements Calorimeters Microbalance Mechanical profilometer Laser profilometer SEM with X-ray analysis IR-cameras Optical microscopes Online diagnostics for dust particle ejection study Dust collectors Quartz crystal microbalance Plasma pressure, plasma flow duration, plasma stream velocity, ion impact energy, plasma flow energy density, absorbed energy density Mass losses, erosion value, surface modification, surface profile, local erosion value Velocities and sizes of dust particles, onset conditions; parameters of films, porosity and fractal structure, films thickness and density, chemical composition I-7, G. Pintsuk, Forschungszentrum Julich PSI, 2010
9
Experimental results CFC NB31, PAN-fibers erosion
100 мкм Q = 1MJ/m2, Δt=0.5 ms, N=100 pulses Pitch fibers PAN fibers «PAN» fibers (6%) «Needled PAN» fibers (2%) Z Y X Plasma flow «pitch» fibers (25-30%) 10 mm F o r s c h u n g z e t m J ü l i J.Linke, T.Hirai PAN fiber damage is a main mechanism of CFC erosion under ELM-like and disruption-like plasma load I-7, G. Pintsuk, Forschungszentrum Julich PSI, 2010
10
CFC erosion PAN-fibers erosion measurement
After 5 pulses Q0=2.3 MJ/m2 Measurement points After 500 pulses Q0=0.5 MJ/m2 Plasma flow direction PAN-fiber erosion value measured along the target surface is correlated to the measured value of absorbed energy density. This correlation allow to define PAN-fiber erosion rate as a function of heat load. I-7, G. Pintsuk, Forschungszentrum Julich PSI, 2010
11
CFC erosion Comparison of experimental and modeling results
Numerical modeling (code PEGASUS-3D) Forschungszentrum Karlsruhe (I.S. Landman, B.N. Bazylev, and S.E. Pestchanyi) PAN-fiber erosion increase from 0.01 μm/pulse to 10 μm/pulse in the heat load range of MJ/m2 I-7, G. Pintsuk, Forschungszentrum Julich PSI, 2010
12
Tungsten erosion Pure W. Crack formation. Primary and secondary cracks
W, 1MJ/m2, 20 pulses 1mm Primary crack: depth 500 µm W, Q=1MJ/m2, 100 pulses 100 pulses 1mm F o r s c h u n g z e t m J ü l i J.Linke, T.Hirai Secondary cracks: depth 50 µm I-7, G. Pintsuk, Forschungszentrum Julich PSI, 2010
13
Numerical simulation PEGASUS-3D. Cracks formation.
Forschungszentrum Karlsruhe (I.S. Landman, B.N. Bazylev, and S.E. Pestchanyi) 500 µm 100 µm Primary cracks (at a depth of 200 μm) Primary cracks Grain Secondary cracks 200 µm Numerical simulation (cod PEGASUS-3D) Secondary cracks (on the surface) I-7, G. Pintsuk, Forschungszentrum Julich PSI, 2010
14
Tungsten erosion Another type of cracks: cracks of the remelted W-1%La2O3
I-7, G. Pintsuk, Forschungszentrum Julich PSI, 2010
15
Tungsten erosion Dust generation as a result of cracking
100 µm W-1%La2O3 W, Q=1MJ/m2, 100 pulses crack width 10µm Melt layer delamination Small tungsten dust particles I-7, G. Pintsuk, Forschungszentrum Julich PSI, 2010
16
Experimental results Combined target (W+CFC), disruptions, Q0 = 2
Experimental results Combined target (W+CFC), disruptions, Q0 = 2.3MJ/m2 Q, MJ/m2 X, cm Y, cm Plasma flow direction W-1%La2O3 -60 g/m2/pulse (mass loss) Pure W CFC NB31 CFC NB31 -80 g/m2/pulse (mass loss) +25 g/m2/pulse (mass growth) -6 g/m2/pulse (mass loss) I-7, G. Pintsuk, Forschungszentrum Julich PSI, 2010
17
Experimental results Combined target, Q = 2.3MJ/m2
PAN-fibers area a b 200 µm 50 µm pitch-fibers area c d I-7, G. Pintsuk, Forschungszentrum Julich PSI, 2010
18
Dust investigation Dust collectors
The modernized target vacuum chamber allow to place various dust collectors and dust traps Polished tungsten substrates Polished silicon substrates Polished silicon substrates Traps of solid particles Fitting elements Copperplates Particle flow а б I-7, G. Pintsuk, Forschungszentrum Julich PSI, 2010 18
19
Polished silicon substrates Polished tungsten substrates
Dust investigation Scheme of dust collectors placement Chamber 2 Chamber 1 Plasma flow Target Collectors circles Collectors lines Polished silicon substrates Polished tungsten substrates After 5 pulses The dust films deposit mainly after the target in plasma flow direction on the cooled part of vacuum chamber The maximum rate of film growth observed on disruption simulation experiment is equal to 0.4 μm/pulse Combined target W+CFC I-7, G. Pintsuk, Forschungszentrum Julich PSI, 2010
20
Dust investigation Various dust structures, W+CFC, disruption experiments, Q=2.3MJ/m2
100 µм 5 µм 5 µм 20 µм 2 µм 1 µм Cauliflower-like structure Crystallite structure Amorphous films I-7, G. Pintsuk, Forschungszentrum Julich PSI, 2010
21
Dust investigation Combined target (W+CFC)
Dust investigation Combined target (W+CFC). Size distributions of deposited particles, 100 µm Tungsten droplets on the CFC PAN-fibers area 10 µм Cauliflower-like structure on the dust collectors I-7, G. Pintsuk, Forschungszentrum Julich PSI, 2010
22
Diagnostics Online diagnostics for droplets and particles ejection study
The scheme of diagnostics Y X Plasma flow direction Pure tungsten, Qabs = 1.2 MJ/m2 , p = 1.8 atm The scheme allows to define: threshold plasma loads for dust particles ejection starting; components of the dust particle velocity vector; absolute velocity value and flight angle of the particle; point of time formation and size of the dust particle. x(t), y(t), z(t) – droplets coordinates I-7, G. Pintsuk, Forschungszentrum Julich PSI, 2010
23
Plasma stream direction
Droplets ejection study Droplet ejection, pure tungsten, energy density Q = 1.6 MJ/m2 Surface of the sample Plasma stream direction γ x y v z I-7, G. Pintsuk, Forschungszentrum Julich PSI, 2010
24
Summary CFC erosion PAN-fiber erosion is the main CFC erosion process under ITER-like transient plasma heat loads. The distribution of PAN-fiber erosion is determined on the CFC surface and related to the absorbed energy density distribution. The value of PAN-fiber erosion increases from 0.01 to 10 μm/pulse with a heat load in the range of MJ/m2 according to the following law ΔhPAN = 0.9Q2.7. The amount of PAN-fiber erosion under plasma action correlates with results from numerical calculations taking vapor shielding and thermal conductivity degradation into account. I-7, G. Pintsuk, Forschungszentrum Julich PSI, 2010
25
Summary W erosion Crack formation is the main W erosion process under ITER-like transient plasma heat loads below the tungsten melting threshold. Primary cracks with a significant depth of up to 500 µm (after 100 pulses) form a grid on the surface with 1-3 mm characteristic cell size. Secondary cracks reach a depth of up to 50 µm (after 100 pulses) and form a surface grid with µm characteristic cell size. The width of primary and secondary cracks increases with number of pulses. The cracks observed on the lanthanum tungsten remelted surface form a grid with cell sizes in the range from 1-100 µm and a melt layer thickness dependent depth. I-7, G. Pintsuk, Forschungszentrum Julich PSI, 2010
26
Summary W erosion Melt layer movement and droplets ejection are the main W erosion processes under ITER-like transient plasma heat loads higher than the tungsten melting threshold. The main part of the droplets (>80%) follow the plasma flow direction at an angle between target surface and velocity vector in the range from 0 to 600. The absolute droplets velocity was determined to be in the range from 0 to 25 m/s. As a result of the exposure of combined W and CFC targets the mass of CFC target increased due to tungsten deposition and accumulation. I-7, G. Pintsuk, Forschungszentrum Julich PSI, 2010
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.