Presentation is loading. Please wait.

Presentation is loading. Please wait.

Thermal stress & cooling of J-Parc neutrino target S. Ueda JHF target monitor R&D group Introduction neutrino target requirement for target Thermal stress.

Similar presentations


Presentation on theme: "Thermal stress & cooling of J-Parc neutrino target S. Ueda JHF target monitor R&D group Introduction neutrino target requirement for target Thermal stress."— Presentation transcript:

1 Thermal stress & cooling of J-Parc neutrino target S. Ueda JHF target monitor R&D group Introduction neutrino target requirement for target Thermal stress Cooling heat transfer coefficient cooling test summary

2 2 Introduction Beam 50 [GeV] proton, 0.75 [MW] 3×10 14 [protons / spill], 5 [μsec/spill] 3.3 [sec](between spills), 8 [bunch/spill] Material graphite or C/C composite Because of; high melting point(~3700 ℃ ) thermal resistance Cooling water cooling Shape cylindrical 900mm long(2λint) & 12~15mm radius beam 900mm Cooling pipe from one-side horn Target

3 3 Requirements for target More pion Thermal shock resistance Possibility to cool The effects of target radius  Larger radius pion yield decreases  Smaller radius Temperature increases more thermal stress surface area decreases difficult to cool The optimization is needed Pion yield 1.2 1.0 0.8 0.6 0.4 0.2 0 2.5 5 7.5 10 12.5 15 Target Size(mm) [K] Temperature rise at center

4 4 Energy deposit heat distribution in 1pulse (15mm radius) 20%difference J/g degree Z R cal. w/ MARS [J/g] r=13mm r=15mm

5 5 Thermal stress Stress estimation Stress estimation quasi-static stress (non-uniform heating) dynamical stress (rapid heating) Material fatigue Material fatigue after repeating stress(10 6 times), tensile strength become 0.8 (IG-110). E :Young ’ s modulus ν:Poisson ratio α:linear expansion coeff. T 0 :Temperature at center

6 6 Material properties Ⅰ Temperature dependence Temperature dependence specific heat tensile strength max temp. rise(G347) r=13mm 234.2[K] almost the same r=15mm 200.6[K] [J/g]

7 7 Material properties Ⅱ thermal expansion coeff.(G347) Young’s modulus(G347) temperature dependence exists these effects should be taken into account. 10 -6 [1/K] [Gpa ]

8 8 Safety factor Definition Definition safety factor = ( tensile strength / σ eq ) Result Result (include fatigue 、 material properties) Type tensile σ eq σ eq strength[Mpa]r=13[MPa] r=15[MPa] Toyo Tanso IG-4337.229.88.92(3.3)7.48 (4.0) Tokai Carbon G34731.425.16.43(3.9)5.55 (4.5) () is safety factor These graphite have sufficient safety factor

9 9 Cooling Requirement Requirement  cool down 60kJ in 3.3 sec  keep T surf under 100 ℃ is a key parameter! α is a key parameter! Q = α S(T surf - T water ) = α SΔ T T surf = T water + ΔT T water ← ΔT ← α α depends cooling test α need to be measured Q : heat transfer [kW] S : surface area [m 2 ] Tsurf : temp. at surface[K] Twater : temp. of water [K] α : heat transfer coeff. [kW/m 2 /K] target water T water T surf Q

10 10 Analytical estimation of ΔT ΔT(t) ΔT(t) depends on ・ initial condition : T rise (r) ・ heat transfer coeff : α α=6α=6 Temp. rise at 5μsec [K] Averaged in z direction ΔTΔT

11 11 Water temperature T water (r) T water (r) (at Z=900mm) T surf = T water + ΔT to estimate maximum T surf, max of T water is necessary T water has max at Z=900mm heat transfer ∝ ΔT T water takes maximum value at 0.8sec Water temp. α=6 20[l/min] beam in [℃][℃] target water Z=0mm Z=900mm beam Q

12 12 α & flow rate Calculation result T surf = ΔT + T water more water flow rate water temp rise : smaller acceptable α : lower Relation between α & flow rate satisfy T surf <100 ℃ Flow rate& α 15 [l/min] -> more than 6.5 [kW/m 2 /K] 20 [l/min]->more than 5.8 [kW/m 2 /K] Is needed [℃][℃] allowable

13 13 Cooling test Purpose measure the heat transfer coeff. How heat up the graphite with DC current, and cool by flowing water Measurement temperatures,water flow rate,current α : heat transfer coeff. [kW/m 2 /K] Q :heat transfer [W] T surf :surface temperature [K] T water :water temperature [K] S :surface area [m 2 ]

14 14 Setup of cooling test Current ~ 1.2kA(20kW) Water flow 8.9, 12[l/min] Target radius 15mm Current feeds DC current thermocouples 900mm target water

15 15 Cooling test results α increase with surface temperature & water flow rate compared with the α condition extrapolate with theoretical formula [℃][℃] [kW/m 2 K] 6.5[kW/m 2 /K] at 15[l/min]

16 16 Comparison w/ theoretical formula Theoretical formula Re(T) :Reynolds number Pr(T) :Prandtl number λ(T) : Thermal conductivity d : equivalent diameter Result Data and calculation seems to agree at 20 [l/min], α expected to satisfies the condition !

17 17 Summary Thermal stress max stress safety factor r=15mm IG-43 7.48[MPa]4.0 G347 5.55[MPa]4.5 cooling calc. relations between α & flow rate r=15mm 15[l/min],6.5[kW/m 2 /K] 20[l/min],5.8[kW/m 2 /K] cooling test possible to cool at more than 20[l/min]

18 18 Schedule Next cooling test with more flow rate We plan to test with 20 [l/min] this month

19 19 reference1 off-axis-beam ⇒ high intensity narrow energy band Horns Super-K. Target Decay Pipe 

20 20 reference2

21 21 reference 3

22 22 reference 4  ΔT(r) time development When the target surface is cooled (at r=R)with α, temperature difference between Tsurf and Twater ( at r,time=τ) : is, ただし λ:heat conductivity a:thermal diffusivity

23 23 reference 5 ΔT[K]

24 24 reference6

25 25 参考6 熱量と中心温度から表面温度 長さ方向に熱の移動がないと仮定した場合、 ターゲット内部では一様発熱。 r Q(r) λ : 熱伝導度 c : 比熱 q : 単位体積当たりの発熱量 R : 半径

26 26 冷却試験 data data POWER :4.2kW~19.4kW flow rate :8.9,12[l/min] each data points are averaged 4.2 12.4 15.2 19.4 14.9 12.2

27 27 JPARC neutrino beamline Proton beam kinetic energy # of protons / pulse Beam power Bunch structure Bunch length (full width) Bunch spacing Spill width Cycle 50GeV (40GeV@T=0) 3.3x10 14 750kW 8 bunches 58ns 598ns ~5  s 3.53sec Primary Proton beam line Extraction point Target Target station muon monitor beam dump Near neutrino detector Decay volume

28 28 J-PARC ニュートリノ 実験 目的 ν μ → ν e ν μ disappearance CPV in lepton sector 十分な統計が必要 J-PARCK2K Energy (GeV)5012 Int. (10 12 ppp)3306 beam 間隔 (sec) 3.32.2 Power (kW)7505.2 ターゲット π+π+ μ+μ+ νμνμ ホーン decay pipe proton

29 29 [Gpa ]

30 30 Water flow 1 900mm target water

31 31 Water flow 2 s 900mm target water

32 32 S 電極 熱電対 91cm 4cm5cm 4.7cm


Download ppt "Thermal stress & cooling of J-Parc neutrino target S. Ueda JHF target monitor R&D group Introduction neutrino target requirement for target Thermal stress."

Similar presentations


Ads by Google