Download presentation
Presentation is loading. Please wait.
Published byBeverley Alexander Modified over 9 years ago
1
Thermal stress & cooling of J-Parc neutrino target S. Ueda JHF target monitor R&D group Introduction neutrino target requirement for target Thermal stress Cooling heat transfer coefficient cooling test summary
2
2 Introduction Beam 50 [GeV] proton, 0.75 [MW] 3×10 14 [protons / spill], 5 [μsec/spill] 3.3 [sec](between spills), 8 [bunch/spill] Material graphite or C/C composite Because of; high melting point(~3700 ℃ ) thermal resistance Cooling water cooling Shape cylindrical 900mm long(2λint) & 12~15mm radius beam 900mm Cooling pipe from one-side horn Target
3
3 Requirements for target More pion Thermal shock resistance Possibility to cool The effects of target radius Larger radius pion yield decreases Smaller radius Temperature increases more thermal stress surface area decreases difficult to cool The optimization is needed Pion yield 1.2 1.0 0.8 0.6 0.4 0.2 0 2.5 5 7.5 10 12.5 15 Target Size(mm) [K] Temperature rise at center
4
4 Energy deposit heat distribution in 1pulse (15mm radius) 20%difference J/g degree Z R cal. w/ MARS [J/g] r=13mm r=15mm
5
5 Thermal stress Stress estimation Stress estimation quasi-static stress (non-uniform heating) dynamical stress (rapid heating) Material fatigue Material fatigue after repeating stress(10 6 times), tensile strength become 0.8 (IG-110). E :Young ’ s modulus ν:Poisson ratio α:linear expansion coeff. T 0 :Temperature at center
6
6 Material properties Ⅰ Temperature dependence Temperature dependence specific heat tensile strength max temp. rise(G347) r=13mm 234.2[K] almost the same r=15mm 200.6[K] [J/g]
7
7 Material properties Ⅱ thermal expansion coeff.(G347) Young’s modulus(G347) temperature dependence exists these effects should be taken into account. 10 -6 [1/K] [Gpa ]
8
8 Safety factor Definition Definition safety factor = ( tensile strength / σ eq ) Result Result (include fatigue 、 material properties) Type tensile σ eq σ eq strength[Mpa]r=13[MPa] r=15[MPa] Toyo Tanso IG-4337.229.88.92(3.3)7.48 (4.0) Tokai Carbon G34731.425.16.43(3.9)5.55 (4.5) () is safety factor These graphite have sufficient safety factor
9
9 Cooling Requirement Requirement cool down 60kJ in 3.3 sec keep T surf under 100 ℃ is a key parameter! α is a key parameter! Q = α S(T surf - T water ) = α SΔ T T surf = T water + ΔT T water ← ΔT ← α α depends cooling test α need to be measured Q : heat transfer [kW] S : surface area [m 2 ] Tsurf : temp. at surface[K] Twater : temp. of water [K] α : heat transfer coeff. [kW/m 2 /K] target water T water T surf Q
10
10 Analytical estimation of ΔT ΔT(t) ΔT(t) depends on ・ initial condition : T rise (r) ・ heat transfer coeff : α α=6α=6 Temp. rise at 5μsec [K] Averaged in z direction ΔTΔT
11
11 Water temperature T water (r) T water (r) (at Z=900mm) T surf = T water + ΔT to estimate maximum T surf, max of T water is necessary T water has max at Z=900mm heat transfer ∝ ΔT T water takes maximum value at 0.8sec Water temp. α=6 20[l/min] beam in [℃][℃] target water Z=0mm Z=900mm beam Q
12
12 α & flow rate Calculation result T surf = ΔT + T water more water flow rate water temp rise : smaller acceptable α : lower Relation between α & flow rate satisfy T surf <100 ℃ Flow rate& α 15 [l/min] -> more than 6.5 [kW/m 2 /K] 20 [l/min]->more than 5.8 [kW/m 2 /K] Is needed [℃][℃] allowable
13
13 Cooling test Purpose measure the heat transfer coeff. How heat up the graphite with DC current, and cool by flowing water Measurement temperatures,water flow rate,current α : heat transfer coeff. [kW/m 2 /K] Q :heat transfer [W] T surf :surface temperature [K] T water :water temperature [K] S :surface area [m 2 ]
14
14 Setup of cooling test Current ~ 1.2kA(20kW) Water flow 8.9, 12[l/min] Target radius 15mm Current feeds DC current thermocouples 900mm target water
15
15 Cooling test results α increase with surface temperature & water flow rate compared with the α condition extrapolate with theoretical formula [℃][℃] [kW/m 2 K] 6.5[kW/m 2 /K] at 15[l/min]
16
16 Comparison w/ theoretical formula Theoretical formula Re(T) :Reynolds number Pr(T) :Prandtl number λ(T) : Thermal conductivity d : equivalent diameter Result Data and calculation seems to agree at 20 [l/min], α expected to satisfies the condition !
17
17 Summary Thermal stress max stress safety factor r=15mm IG-43 7.48[MPa]4.0 G347 5.55[MPa]4.5 cooling calc. relations between α & flow rate r=15mm 15[l/min],6.5[kW/m 2 /K] 20[l/min],5.8[kW/m 2 /K] cooling test possible to cool at more than 20[l/min]
18
18 Schedule Next cooling test with more flow rate We plan to test with 20 [l/min] this month
19
19 reference1 off-axis-beam ⇒ high intensity narrow energy band Horns Super-K. Target Decay Pipe
20
20 reference2
21
21 reference 3
22
22 reference 4 ΔT(r) time development When the target surface is cooled (at r=R)with α, temperature difference between Tsurf and Twater ( at r,time=τ) : is, ただし λ:heat conductivity a:thermal diffusivity
23
23 reference 5 ΔT[K]
24
24 reference6
25
25 参考6 熱量と中心温度から表面温度 長さ方向に熱の移動がないと仮定した場合、 ターゲット内部では一様発熱。 r Q(r) λ : 熱伝導度 c : 比熱 q : 単位体積当たりの発熱量 R : 半径
26
26 冷却試験 data data POWER :4.2kW~19.4kW flow rate :8.9,12[l/min] each data points are averaged 4.2 12.4 15.2 19.4 14.9 12.2
27
27 JPARC neutrino beamline Proton beam kinetic energy # of protons / pulse Beam power Bunch structure Bunch length (full width) Bunch spacing Spill width Cycle 50GeV (40GeV@T=0) 3.3x10 14 750kW 8 bunches 58ns 598ns ~5 s 3.53sec Primary Proton beam line Extraction point Target Target station muon monitor beam dump Near neutrino detector Decay volume
28
28 J-PARC ニュートリノ 実験 目的 ν μ → ν e ν μ disappearance CPV in lepton sector 十分な統計が必要 J-PARCK2K Energy (GeV)5012 Int. (10 12 ppp)3306 beam 間隔 (sec) 3.32.2 Power (kW)7505.2 ターゲット π+π+ μ+μ+ νμνμ ホーン decay pipe proton
29
29 [Gpa ]
30
30 Water flow 1 900mm target water
31
31 Water flow 2 s 900mm target water
32
32 S 電極 熱電対 91cm 4cm5cm 4.7cm
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.