Presentation is loading. Please wait.

Presentation is loading. Please wait.

Computational prediction of 3D Structure of Bilitranslocase Membrane Transporter: Drug Development Perspectives Amrita Roy Choudhury National Institute.

Similar presentations


Presentation on theme: "Computational prediction of 3D Structure of Bilitranslocase Membrane Transporter: Drug Development Perspectives Amrita Roy Choudhury National Institute."— Presentation transcript:

1 Computational prediction of 3D Structure of Bilitranslocase Membrane Transporter: Drug Development Perspectives Amrita Roy Choudhury National Institute of Chemistry Slovenia 29 November 2013

2 Introduction – Bilitranslocase  Plasma membrane organic anion transporter protein  340 residues long  Distribution – hepatic cells, gastric, intestinal and renal epithelium, vascular endothelium, brain cells  No sequence homolog  Presence of motif conserved in phycocyanins  Function – transport of organic anions like bilirubin, anthocyanins, flavonoids, nicotinic acid  Potential candidate for drug target 2

3 Workflow 3 Sequence analysis Transmembrane region prediction Stability assessment of predicted transmembrane domain Transmembrane domain arrangement analysis NMR studies of transmembrane domains Towards possible functional mechanism

4 Sequence analysis  Grand Average of Hydropathicity – 0.255 (marginally hydrophobic)  Conserved motif 1 (bilirubin- binding motif) BTL residues 62-80 V-[ISA]-[CAT]-[AE]-D-S-Q-G-[RQ]-[FH]-L- S-S-[TF]-[EC]-L-[QF]-V-A  Conserved motif 2 BTL residues 220-228 G-[SK]-[VAD]-[QK]-C-[ASV]-[GR]-[LD]-I 4

5 24-48 (TM1) 75-94 (TM2) 220-238 (TM3) 254-276 (TM4) MLIHNWILTFSIFREHPSTVFQIFTKCILVSSSFLLFYTLLPHGLLEDLMRRVGDSLVDLIVICE DSQGQHLSSFCLFVATLQSPFSAGVSGLCKAILLPSKQIHVMIQSVDLSIGITNSLTNEQLCGFG FFLNVKTNLHCSRIPLITNLFLSARHMSLDLENSVGSYHPRMIWSVTWQWSNQVPAFGETSLGFG MFQEKGQRHQNYEFPCRCIGTCGRGSVQCAGLISLPIAIEFTYQLTSSPTCIVRPWRFPNIFPLI ACILLLSMNSTLSLFSFSGGRSGYVLMLSSKYQDSFTSKTRNKRENSIFFLGLNTFTDFRHTING PISPLMRSLTRSTVE Algorithm1234 Predicted transmembrane regions CPNN-PredαTM24-48, 75-94, 220-238, 254-276 TMpred26-45, 75-102, 217-237, 256-278 TopPred II26-46, 72-92, 221-241, 257-277 SOUSI PRED-TMR27-46, 75-94, 256-277 TMHMM20-42, 256-278 HMMTOP20-43, 226-245, 257-277 Phobius20-41, 256-277 SVMtm27-41, 257-273 DAS-TMfilter27-42, 257-271 MEMSAT22-42, 257-275 SCAMPI21-41, 221-241, 256-276 MemBrain23-42, 74-82, 256-270 Philius19-41, 76-99, 255-279 OCTOPUS23-43, 254-274 TOPCONS21-41, 221-241, 259-279 Transmembrane region prediction 5

6 Analysis of predicted transmembrane domains 6In discussion with Sabina Passamonti (University of Trieste)

7 Stability assessment of transmembrane domains  20 ns molecular dynamics (MD) simulations using CHARMM  Alpha helical conformation  Fully solvated DPPC membrane  Analyze trajectories  Analyze RMSD and backbone torsion angles 7In collaboration with Andrej Perdih, Tom Solmajer (KI)

8 Stability assessment of transmembrane domains In collaboration with Andrej Perdih, Tom Solmajer (KI)8

9 Stability assessment of transmembrane domains Average RMSD  TM1 – 1.23  TM2 – 0.59  TM3 – 0.52  TM4 – 0.65 9In collaboration with Andrej Perdih, Tom Solmajer (KI)

10 Transmembrane helix-helix interaction 1.Based on complete transmembrane domain (SaliLab) 2.Based on residue contact (TMhit)  Predicted transmembrane helix-helix interactions  TM2-TM3  TM1-TM4 10In collaboration with Max Bonomi, Andrej Sali (UCSF)

11 Transmembrane domain arrangements  Monte Carlo (MC) simulation  Constraints – DOPE, excluded volume, packing, distance, diameter, tilt, depth, interaction  2 million conformations  3520 clusters  Score the representative all-atom models for each cluster  Analyze distribution 11In collaboration with Max Bonomi, Andrej Sali (UCSF)

12 Transmembrane domain arrangements Domain arrangement All 3520 structures 100 top-scoring structures ABCD2819 ADBC2134 ACDB561 ABDC133044 ACBD86227 ADCB77815 12In collaboration with Max Bonomi, Andrej Sali (UCSF)

13 13 NMR studies of the Bilitranslocase transmembrane domains – Igor Zhukov

14 Discussion – towards functional mechanism of BTL  TM2 and TM3 play significant role in transport channel formation, ligand binding and mediation  Conserved Ser (73, 74, 229) and Cys (75, 224) are solvent-accessible  Probable allosteric nature  Probable bi-directional transport system 14


Download ppt "Computational prediction of 3D Structure of Bilitranslocase Membrane Transporter: Drug Development Perspectives Amrita Roy Choudhury National Institute."

Similar presentations


Ads by Google