Download presentation
Presentation is loading. Please wait.
Published byAron Peters Modified over 9 years ago
1
Fig. 3-00
2
Fig. 3-01 Carbon skeletons vary in length Carbon skeletons may have double bonds, which can vary in location Carbon skeletons may be unbranched or branchedCarbon skeletons may be arranged in rings Double bond
3
Fig. 3-01a Carbon skeletons vary in length
4
Fig. 3-01b Double bond Carbon skeletons may have double bonds, which can vary in location
5
Fig. 3-01c Carbon skeletons may be unbranched or branched
6
Fig. 3-01d Carbon skeletons may be arranged in rings
7
Fig. 3-02 Structural formulaBall-and-stick modelSpace-filling model
8
Fig. 3-02a Structural formula
9
Fig. 3-02b Ball-and-stick model
10
Fig. 3-02c Space-filling model
11
Fig. 3-03
12
Fig. 3-04 Short polymer Monomer Dehydration reaction Longer polymer Hydrolysis (a) Building a polymer chain(b) Breaking a polymer chain
13
Fig. 3-04a Short polymerMonomer Dehydration reaction Longer polymer (a) Building a polymer chain
14
Fig. 3-04b Hydrolysis (b) Breaking a polymer chain
15
Fig. 3-05 GlucoseFructose C 6 H 12 O 6 Isomers
16
Fig. 3-05a Glucose Fructose C 6 H 12 O 6 Isomers
17
Fig. 3-06 (a) Linear and ring structures (b) Abbreviated ring structure
18
Fig. 3-06a (a) Linear and ring structures
19
Fig. 3-06b (b) Abbreviated ring structure
20
Fig. 3-07 Glucose Galactose Lactose
21
Fig. 3-08 processed to extract broken down into converted to sweeter added to foods as high-fructose corn syrup Starch Glucose Fructose Ingredients: carbonated water, high-fructose corn syrup, caramel color, phosphoric acid, natural flavors
22
Fig. 3-09 Glucose monomer (a) Starch (b) Glycogen (c) Cellulose Starch granules Glycogen granules Cellulose fibril Cellulose molecules
23
Fig. 3-10 Oil (hydrophobic) Vinegar (hydrophilic)
24
Fig. 3-11 Fatty acid Glycerol (a) A dehydration reaction linking a fatty acid to glycerol (b) A fat molecule with a glycerol “head” and three energy-rich hydrocarbon fatty acid “tails”
25
Fig. 3-11a Fatty acid Glycerol (a) A dehydration reaction linking a fatty acid to glycerol
26
Fig. 3-11b (b) A fat molecule with a glycerol “head” and three energy-rich hydrocarbon fatty acid “tails”
27
Fig. 3-12 Saturated Fats TYPES OF FATS Unsaturated Fats Margarine Plant oils Trans fats Omega-3 fats INGREDIENTS: SOYBEAN OIL, FULLY HYDROGENATED COTTONSEED OIL, PARTIALLY HYDROGENATED COTTONSEED OIL AND SOYBEAN OILS, MONO AND DIGLYCERIDES, TBHO AND CITRIC ACID ANTIOXIDANTS
28
Fig. 3-12a Saturated Fats
29
Fig. 3-12b Unsaturated Fats Margarine Plant oils Trans fats Omega-3 fats INGREDIENTS: SOYBEAN OIL, FULLY HYDROGENATED COTTONSEED OIL, PARTIALLY HYDROGENATED COTTONSEED OIL AND SOYBEAN OILS, MONO AND DIGLYCERIDES, TBHO AND CITRIC ACID ANTIOXIDANTS
30
Fig. 3-13 Cholesterol TestosteroneA type of estrogen
31
Fig. 3-14 THG
32
Fig. 3-15 MAJOR TYPES OF PROTEINS Structural ProteinsStorage Proteins Contractile ProteinsTransport ProteinsEnzymes
33
Fig. 3-15a Structural Proteins (provide support)
34
Fig. 3-15b Storage Proteins (provide amino acids for growth)
35
Fig. 3-15c Contractile Proteins (help movement)
36
Fig. 3-15d Transport Proteins (help transport substances)
37
Fig. 3-15e Enzymes (help chemical reactions)
38
Fig. 3-16 (a) The general structure of an amino acid (b) Examples of amino acids with hydrophobic and hydrophilic side groups Amino group Carboxyl group Hydrophobic side group Hydrophilic side group LeucineSerine Side group
39
Fig. 3-16a (a) The general structure of an amino acid Amino group Carboxyl group Side group
40
Fig. 3-16b (b) Examples of amino acids with hydrophobic and hydrophilic side groups Hydrophobic side group Hydrophilic side group LeucineSerine
41
Fig. 3-17-1 Amino group Carboxyl group Side group Side group Amino acid
42
Fig. 3-17-2 Amino group Carboxyl group Side group Side group Amino acid Side group Side group Dehydration reaction Peptide bond
43
Fig. 3-18 Amino acid 1 5 10 20 15 25 30 35 40 45 5055 60 65 70 75 80 85 90 95 100 105 110 115 120 125 129
44
Fig. 3-19 Normal red blood cell Sickled red blood cellSickle-cell hemoglobin (b) Sickle-cell hemoglobin (a) Normal hemoglobin Normal hemoglobin 1 2 3 4 5 6 7... 146 1 2 3 4 5 6 SEM
45
Fig. 3-19a Normal red blood cell (a) Normal hemoglobin Normal hemoglobin 1 2 3 4 5 6 7... 146 SEM
46
Fig. 3-19b Sickled red blood cellSickle-cell hemoglobin (b) Sickle-cell hemoglobin 1 2 3 4 5 6 7... 146 SEM
47
Fig. 3-20-1 (a) Primary structure
48
Fig. 3-20-2 (a) Primary structure (b) Secondary structure Amino acids Pleated sheet Alpha helix
49
Fig. 3-20-3 (a) Primary structure (b) Secondary structure Amino acids Pleated sheet Alpha helix (c) Tertiary structure Polypeptide
50
Fig. 3-20-4 (a) Primary structure (b) Secondary structure Amino acids Pleated sheet Alpha helix (c) Tertiary structure Polypeptide (d) Quaternary structure Protein with four polypeptides
51
Fig. 3-21 Protein Target
52
Fig. 3-22 Gene DNA RNA Protein Amino acid Nucleic acids
53
Fig. 3-23 Nitrogenous base (A, G, C, or T) Thymine (T) Phosphate group Sugar (deoxyribose) (a) Atomic structure(b) Symbol used in this book Phosphate Base Sugar
54
Fig. 3-23a Nitrogenous base (A, G, C, or T) Thymine (T) Phosphate group Sugar (deoxyribose) (a) Atomic structure
55
Fig. 3-23b (b) Symbol used in this book Phosphate Base Sugar
56
Fig. 3-24 Adenine (A)Guanine (G) Thymine (T)Cytosine (C) Adenine (A)Guanine (G)Thymine (T)Cytosine (C) Space-filling model of DNA
57
Fig. 3-24a Adenine (A)Guanine (G) Thymine (T)Cytosine (C)
58
Fig. 3-24b Adenine (A) Guanine (G) Thymine (T)Cytosine (C) Space-filling model of DNA
59
Fig. 3-25 Sugar-phosphate backbone Nucleotide Base pair Hydrogen bond Bases (a) DNA strand (polynucleotide) (b) Double helix (two polynucleotide strands)
60
Fig. 3-25a Sugar-phosphate backbone Nucleotide Bases (a) DNA strand (polynucleotide)
61
Fig. 3-25b Base pair Hydrogen bond (b) Double helix (two polynucleotide strands)
62
Fig. 3-26 Phosphate group Nitrogenous base (A, G, C, or U) Uracil (U) Sugar (ribose)
63
Fig. 3-27 DNA Human cell (DNA in 46 Chromosomes) Chromosome 2 (one DNA molecule) Section of chromosome 2 Lactase gene 14,000 nucleotides C at this site causes lactose intolerance T at this site causes lactose tolerance
64
Fig. 3-28
65
Fig. 3-UN01 Short polymerMonomerHydrolysis Dehydration reaction Longer polymer
66
Fig. 3-UN02 Large biological molecules FunctionsComponentsExamples Carbohydrates Lipids Proteins Nucleic acids Dietary energy; storage; plant structure Long-term energy storage (fats); hormones (steroids) Enzymes, structure, storage, contraction, transport, and others Information storage Monosaccharides: glucose, fructose Disaccharides: lactose, sucrose Polysaccharides: starch, cellulose Fats (triglycerides); Steroids (testosterone, estrogen) Lactase (an enzyme), hemoglobin (a transport protein) DNA, RNA Monosaccharide Components of a triglyceride Amino acid Nucleotide Fatty acid Glycerol Amino group Carboxyl group Side group Phosphate Base Sugar
67
Fig. 3-UN02a FunctionsComponentsExamples Dietary energy; storage; plant structure Monosaccharides: glucose, fructose Disaccharides: lactose, sucrose Polysaccharides: starch, cellulose Monosaccharide Carbohydrates
68
Fig. 3-UN02b FunctionsComponentsExamples Lipids Long-term energy storage (fats); hormones (steroids) Fats (triglycerides); Steroids (testosterone, estrogen) Components of a triglyceride Fatty acid Glycerol
69
Fig. 3-UN02c FunctionsComponentsExamples Proteins Enzymes, structure, storage, contraction, transport, and others Lactase (an enzyme), hemoglobin (a transport protein) Amino acid Amino group Carboxyl group Side group
70
Fig. 3-UN02d FunctionsComponentsExamples Nucleic acids Information storage DNA, RNA Nucleotide Phosphate Base Sugar
71
Fig. 3-UN03 Primary structure (sequence of amino acids) Secondary structure (localized folding) Tertiary structure (overall shape) Quaternary structure (found in proteins with multiple polypeptides)
72
Fig. 3-UN04 DNA double helix DNA strandDNA nucleotide Base Sugar Phosphate group
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.