Download presentation
Presentation is loading. Please wait.
Published byRodney Burke Modified over 9 years ago
1
Chapter 4 The Three-Dimensional Structure of Proteins
3
Example of Chymotrypsin and AA (glycin)
4
Characteristics of native proteins Thermodynamically stable – lowest ΔG Functionally intact
5
Drive force for a stable protein structure Arrangement of hydrophobic residues in the internal space of proteins Maximized hydrogen bonds
6
Cannot freely rotate
7
Primary structure of peptide Rotation 가능 Φ : N-Cα Ψ : Cα-C Ramachandran plot : provide prediction of stable confirmation of AA in prim.structure
8
The sculpture stands in front of Pauling's childhood home on 3945 SE Hawthorne Boulevard in Portland (Ore., USA).
9
Secondary structure R-groups position outside the axis Alpha-helix
11
Factors that affect alpha-helix structure Charged R-groups : high content of charged R-groups negatively affect alpha-helix D(Asp), E(Glu) : negatively charged K(Lys), R(Arg), H(His) : positively charged Proline : N-C alpha cannot rotate, cannot give hydrogen from N (Imino ring) But alpha-helix often starts with Pro. Glycin : negatively affect because of its high conformational flexibility It often terminates alpha-helix. Size of adjacent R-groups Interaction between R-groups : dipole-dipole between AAs with 3-4 apart.
14
-sheet conformation
16
-turn : Connects alpha- or beta- structures (ex: at the end of anti-parallel beta-sheet) Pro, Gly are common residues found in beta-turn structure >
17
Predominate in -turn
19
* *
20
Tertiary structure of protein In globular proteins, tertiary interactions are frequently stabilized by the sequestration of hydrophobic amino acid residues in the protein core, from which water is excluded, and by the consequent enrichment of charged or hydrophilic residues on the protein's water-exposed surface.globular proteinshydrophobic In secreted proteins that do not spend time in the cytoplasm, disulfide bonds between cysteine residues help to maintain the protein's tertiary structure.secretedcytoplasmdisulfide bondscysteine The majority of protein structures known to date have been solved with the experimental technique of X-ray crystallography, which typically provides data of high resolution but provides no time-dependent information on the protein's conformational flexibility. A second common way of solving protein structures uses NMR, which provides somewhat lower-resolution data in general and is limited to relatively small proteins, but can provide time-dependent information about the motion of a protein in solution. More is known about the tertiary structural features of soluble globular proteins than about membrane proteins because the latter class is extremely difficult to study using these methods.crystallographyNMRmembrane proteins : Results from interactions among secondary structures. Disulfide bonds and Weak interactions Sensitive to environment
21
Quartinary structure of protein Generally referred to as specific arrangements of multiple polypeptide chains or subunits Fibrous proteins : ex, alpha-keratin, collagen, fibroin etc. Globular proteins : many enzymes..
22
Quatinary structures are stabilized by S-S bonds (high content of Cys)
24
>gi|386848|gb|AAB59562.1| keratin homo sapiens MTTCSRQFTSSSSMKGSCGIGGGIGAGSSRISSVLAGGSCRAPNTYGGGLSVSSSRFSSGGAYGLGGGYG GGFSSSSSSFGSGFGGGYGGGLGAGLGGGFGGGFAGGDGLLVGSEKVTMQNLNDRLASYLDKVRALEEAN ADLEVKIRDWYQRQRPAEIKDYSPYFKTIEDLRNKILTATVDNANVLLQIDNARLAADDFRTKYETELNL RMSVEADINGLRRVLDELTLARADLEMQIESLKEELAYLKKNHEEEMNALRGQVGGDVNVEMDAAPGVDL SRILNEMRDQYEKMAEKNRKDAEEWFFTKTEELNREVATNSELVQSGKSEISELRRTMQNLEIELQSQLS MKASLENSLEETKGRYCMQLAQIQEMIGSVEEQLAQLRCEMEQQNQEYKILLDVKTRLEQEIATYRRLLE GEDAHLSSSQFSSGSQSSRDVTSSSRQIRTKVMDVHDGKVVSTHEQVLRTKN
25
Structure of Collagen Alpha-chain.. Differ from alpha-helix Left-handed helix Include 4-hydroxyproline Characteristic repeats of GXY (where X=P, Y=4-hydoroxy P)
26
gi|466538|dbj|BAA04809.1| collagen [Homo sapiens] MHPGLWLLLVTLCLTEELAAAGEKSYGKPCGGQDCSGSCQCFPEKGARGRPGPIGIQGPTGPQGFTGSTG LSGLKGERGFPGLLGPYGPKGDKGPMGVPGFLGINGIPGHPGQPGPRGPPGLDGCNGTQGAVGFPGPDGY PGLLGPPGLPGQKGSKGDPVLAPGSFKGMKGDPGLPGLDGITGPQGAPGFPGAVGPAGPPGLQGPPGPPG PLGPDGNMGLGFQGEKGVKGDVGLPGPAGPPPSTGELEFMGFPKGKKGSKGEPGPKGFPGISGPPGFPGL GTTGEKGEKGEKGIPGLPGPRGPMGSEGVQGPPGQQGKKGTLGFPGLNGFQGIEGQKGDIGLPGPDVFID IDGAVISGNPGDPGVPGLPGLKGDEGIQGLRGPSGVPGLPALSGVPGALGPQGFPGLKGDQGNPGRTTIG AAGLPGRDGLPGPPGPPGPPSPEFETETLHNKESGFPGLRGEQGPKGNLGLKGIKGDSGFCACDGGVPNT GPPGEPGPPGPWGLIGLPGLKGARGDRGSGGAQGPAGAPGLVGPLGPSGPKGKKGEPILSTIQGMPGDRG DSGSQGFRGVIGEPGKDGVPGLPGLPGLPGDGGQGFPGEKGLPGLPGEKGHPGPPGLPGNGLPGLPGPRG LPGDKGKDGLPGQQGLPGSKGITLPCIIPGSYGPSGFPGTPGFPGPKGSRGLPGTPGQPGSSGSKGEPGS PGLVHLPELPGFPGPRGEKGLPGFPGLPGKDGLPGMIGSPGLPGSKGATGDIFGAENGAPGEQGLQGLTG HKGFLGDSGLPGLKGVHGKPGLLGPKGERGSPGTPGQVGQPGTPGSSGPYGIKGKSGLPGAPGFPGISGH PGKKGTRGKKGPPGSIVKKGLPGLKGLPGNPGLVGLKGSPGSPGVAGLPALSGPKGEKGSVGFVGFPGIP GLPGISGTRGLKGIPGSTGKMGPSGRAGTPGEKGDRGNPGPVGIPSPRRPMSNLWLKGDKGSQGSAGSNG FPGPRGDKGEAGRPGPPGLPGAPGLPGIIKGVSGKPGPPGFMGIRGLPGLKGSSGITGFPGMPGESGSQG IRGSPGLPGASGLPGLKGDNGQTVEISGSPGPKGQPGESGFKGTKGRDGLIGNIGFPGNKGEDGKVGVSG DVGLPGAPGFPGVAGMRGEPGLPGSSGHQGAIGPLGSPGLIGPKGFPGFPGLHGLNGLPGTKGTHGTPGP SITGVPGPAGLPGPKGEKGYPGIGIGAPGKPGLRGQKGDRGFPGLQGPAGLPGAPGISLPSLIAGQPGDP GRPGLDGERGRPGPAGPPGPPGPSSNQGDTGDPGFPGIPGFSGLPGELGLKGMRGEPGFMGTPGKVGPPG DPGFPGMKGKAGARGSSGLQGDPGQTPTAEAVQVPPGPLGLPGIDGIPGLTGDPGAQGPVGLQGSKGLPG IPGKDGPSGLPGPPGALGDPGLPGLQGPPGFEGAPGQQGPFGMPGMPGQSMRVGYTLVKHSQSEQVPPCP IGMSQLWVGYSLLFVEGQEKAHNQDLGFAGSCLPRFSTMPFIYCNINEVCHYARRNDKSYWLSTTAPIPM MPVSQTQIPQYISRCSVCEAPSQAIAVHSQDITIPQCPLGWRSLWIGYSFLMHTAAGAEGGGQSLVSPGS CLEDFRATPFIECSGARGTCHYFANKYSFWLTTVEERQQFGELPVSETLKAGQLHTRVSRCQVCMKSL
27
Supertwisted triple coil
29
Silk Fibroin : rich in A & G Overally -sheet conformation
30
>gi|164448672|ref|NP_001106733.1| silk fibroin heavy chain [Bombyx mori] MRVKTFVILCCALQYVAYTNANINDFDEDYFGSDVTVQSSNTTDEIIRDASGAVIEEQITTKKMQRKNKN HGILGKNEKMIKTFVITTDSDGNESIVEEDVLMKTLSDGTVAQSYVAADAGAYSQSGPYVSNSGYSTHQG YTSDFSTSAAVGAGAGAGAAAGSGAGAGAGYGAASGAGAGAGAGAGAGYGTGAGAGAGAGYGAGAGAGAG AGYGAGAGAGAGAGYGAGAGAGAGAGYGAGAGAGAGAGYGAGAGAGAGAGYGAASGAGAGAGYGQGVGSG AASGAGAGAGAGSAAGSGAGAGAGTGAGAGYGAGAGAGAGAGYGAASGTGAGYGAGAGAGYGGASGAGAG AGAGAGAGAGAGYGTGAGYGAGAGAGAGAGAGAGYGAGAGAGYGAGYGVGAGAGYGAGYGAGAGSGAASG AGSGAGAGSGAGAGSGAGAGSGAGAGSGAGAGSGAGAGSGAGAGSGAGAGSGTGAGSGAGAGYGAGAGAG YGAGAGSGAASGAGAGSGAGAGSGAGAGSGAGAGSGAGAGSGAGAGYGAGAGAGYGAGAGAGYGAGAGVG YGAGAGSGAASGAGAGSGAGAGSGAGAGSGAGAGSGAGAGSGAGAGSGAGAGSGAGAGSGAGAGSGAGVG YGAGVGAGYGAGYGAGAGAGYGAGAGSGAASGAGAGAGAGAGTGSSGFGPYVANGGYSRSDGYEYAWSSD FGTGSGAGAGSGAGAGSGAGAGSGAGAGSGAGAGSGAGAGYGAGVGVGYGAGYGAGAGAGYGAGAGSGAA SGAGAGSGAGAGSGAGAGSGAGAGSGAGAGSGAGAGSGAGAGSGAGAGSGAGAGSGAGAGSGAGVGSGAG AGSGAGAGVGYGAGAGVGYGAGAGSGAASGAGAGSGAGAGSGAGAGSGAGAGSGAGAGSGAGAGSGAGAG SGAGAGSGAGAGSGAGVGYGAGVGAGYGAGYGAGAGAGYGAGAGSGAASGAGAGSGAGAGSGAGAGSGAG AGSGAGAGSGAGAGSGAGAGSGAGAGSGAGAGSGAGAGSGAGAGSGAGAGYGAGAGAGYGAGYGAGAGAG YGAGAGSGAASGAGSGAGAGSGAGAGAGSGAGAGSGAGAGSGAGAGSGAGAGSGAGAGSGAGAGYGAGVG AGYGAGYGAGAGAGYGAGAGSGAASGAGAGSGAGAGSGAGAGSGAGAGSGAGAGSGAGAGSGAGAGSGAG VGYGAGYGAGAGAGYGAGAGSGAASGAGAGAGAGAGTGSSGFGPYVAHGGYSGYEYAWSSESDFGTGSGA GAGSGAGAGSGAGAGSGAGAGSGAGYGAGVGAGYGAGYGAGAGAGYGAGAGSGAGSGAGAGSGAGAGSGA GAGSGAGAGSGAGAGSGAGAGSGAGAGSGAGAGSGAGAGYGAGYGAGAGAGYGAGAGSGAGSGAGAGSGA GAGSGAGAGSGAGAGSGAGAGSGAGAGSGAGAGSGAGAGYGAGVGAGYGAGYGAGAGAGYGAGAGSGAGS GAGAGSGAGAGSGAGAGSGAGVGSGAGAGSGAGAGSGAGAGSGAGAGYGAGYGAGAGAGYGAGAGSGAGS GAGAGSGAGAGSGAGAGSGAGAGSGAGAGSGAGAGSGAGAGSGAGVGYGAGVGAGYGAGYGAGAGAGYGA GAGSGAASGAGAGAGAGAGTGSSGFGPYVANGGYSGYEYAWSSESDFGTGSGAGAGSGAGAGSGAGAGSG AGAGSGAGAGYGAGYGAGAGAGYGAGAGSGAGSGAGAGSGAGAGSGAGAGSGAGAGSGAGAGSGAGAGSG AGAGSGAGSGSGAGAGSGAGAGSGAGAGYGAGVGAGYGVGYGAGAGAGYGAGAGSGAASGAGAGAGAGAG TGSSGFGPYVAHGGYSGYEYAWSSESDFGTGSGAGAGSGAGAGSGAGAGSGAGAGSGAGAGSGAGAGSGA GAGYGAGVGAGYGAAYGAGAGAGYGAGAGSGAASGAGAGSGAGAGSGAGAGSGAGAGSGAGAGSGAGAGS GAGAGSGAGAGSGAGAGSGAGAGSGAGAGYGAGAGAGYGAGAGSGAGSGAGAGSGAGAGSGAGAGSGAGA GSGAGAGSGAGSGSGAGAGSGAGAGSGAGAGYGAGVGAGYGAGYGAGAGAGYGAGAGSGAGSGAGAGSGA GAGYGAGAGAGYGAGYGAGAGAGYGAGAGTGAGSGAGAGSGAGAGSGAGAGSGAGAGSGAGAGSGAGAGS GAGSGSGAGAGSGAGAGSGAGAGSGAGAGSGAGAGSGAGAGYGAGAGAGYGAGYGAGAGAGYGAGAGSGA GSGAGAGSGAGAGSGAGAGSGAGAGYGAGYGAGAGSGAASGAGAGAGAGAGTGSSGFGPYVAHGGYSGYE YAWSSESDFGTGSGAGAGSGAGAGAGAGAGSGAGAGYGAGVGAGYGAGYGAGAGAGYGAGAGSGTGSGAG AGSGAGAGYGAGVGAGYGAGAGSGAAFGAGAGAGAGSGAGAGSGAGAGSGAGAGSGAGAGSGAGAGYGAG YGAGVGAGYGAGAGSGAASGAGAGSGAGAGSGAGAGSGAGAGSGAGAGSGAGAGYGAGVGAGYGAGYGAG AGAGYGAGAGSGAASGAGAGSGAGAGAGSGAGAGSGAGAGSGAGAGSGAGSGAGAGSGAGAGSGAGAGYG AGAGSGAASGAGAGAGAGAGTGSSGFGPYVANGGYSGYEYAWSSESDFGTGSGAGAGSGAGAGSGAGAGS GAGAGSGAGAGYGAGVGAGYGAGYGAGAGAGYGAGAGSGAGSGAGAGSGAGAGSGAGAGSGAGAGSGAGA GSGAGAGSGAGAGYGAGAGSGAASGAGAGSGAGAGSGAGAGSGAGAGSGAGAGSGAGAGSGAGAGYGAGV GAGYGVGYGAGAGAGYGAGAGSGAGSGAGAGSGAGAGSGAGAGSGAGAGSGAGSGAGAGSGAGAGSGAGA GSGAGSGAGAGSGAGAGYGVGYGAGAGAGYGAGAGSGAGSGAGAGSGAGAGSGAGAGSGAGSGAGAGSGA GAGSGAGAGSGAGAGYGAGVGAGYGVGYGAGAGAGYGAGAGSGAGSGAGAGSGAGAGSGAGAGSGAGAGS----- ….partial 5263 AA
32
Globular proteins Complex foldings Ex: Myoglobin Heme 8 alpha-helices Blue= hydrophobic residues Mostly packed inside.
33
His 93 of myoglobin Heme : (proto)porphyrin + Fe
34
Heme
37
Common patterns of protein folding
39
Structural classification of proteins (4 major groups + misc.)
41
Alpha, beta structure 의 반복 또는 교차
43
Class Number of folds Number of superfamilies Number of families All alpha proteins259459772 All beta proteins165331679 Alpha and beta proteins (a/b)141232736 Alpha and beta proteins (a+b)334488897 Multi-domain proteins53 74 Membrane and cell surface proteins 5092104 Small proteins85122202 Total108617773464 Year 2007 database
44
1.AA sequence determines structure of a protein 2. Function of a protein is dependant on its structure 3. A protein has some particular conformations 4. Particular structures are maintained by disulfide bond & complex non-covalent bonds 5. Proteins have common internal structural patterns Chapter summary
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.