Download presentation
Published byAldous Flowers Modified over 9 years ago
1
Dynamics of Coupled Oscillators-Theory and Applications
Alexandra Landsman, Naval Research Laboratory Ira B. Schwartz, Naval Research Laboratory Research supported by the Office of Naval Research
2
Outline Brief intro Types of synchronization
Phase synchronization (frequency locking) Complete Generalized Synchronization of coupled lasers Phase synchronization of limit cycle oscillators Summary and conclusions
3
Synchronization – What is it?
Many things in nature oscillate Many things in nature are connected Definition: Synchronization is the adjustment of rhythms of oscillating objects due to their weak interactions* *A. Pikovsky, M. Rosenblum and J. Kurths, Synchronization, Cambridge Univ. Press 2001
4
Why Synchronization is Interesting
Physical systems: Clocks; Pattern formation; Dynamics of coherent structures in spatially extended systems (Epidemics, Neurons, Lasers, continuum mechanics,…) Engineering: Communication systems; Manufacturing processes Coupled fiber lasers for welding Coupled chemical reactors for etching Biological systems: Healthy dynamical rhythms; Dynamical diseases; Population dynamics Defense Applications: New tunable radiation sources THz sources for IED detection Secure communications Communicating autonomous vehicles
5
Complete Synchronization
Complete or identical synchronization (easiest to understand) The difference between states of systems goes asymptotically to zero as time goes to infinity. Amplitudes and phases are identical X(t) Y(t) x-y t x t y
6
Phase synchronization
Unidirectional Coupling in a Laser (Meucci) Synchronization phases of one oscillator to an external oscillator Phases have a functional relationship If phases are locked, or entrained, Then dynamics is in phase synchrony Frequency locking Georgiou and Schwartz, SIAM J. Appli Math, 1999 Schwartz et al, CHAOS, 2005
7
Generalized synchronization
Systems exhibit quite different temporal evolutions, There exists a functional relation between them. N. F. Rulkov et al. Phys. Rev. E51 980, (1995) Detecting generalized synchronization is difficult to implement in experiments Good for large changes in time scales
8
Generalized synchronization
The auxiliary system method: Two or more replicas of the response system are available ( i.e. obtained starting from different initial conditions) Complete synchronization between response systems implies generalized synchronization between response and drive systems. Experimental evidence of NIS CO2 laser (Meucci) Start of the common noise signal
9
Application 1: coupled arrays of limit cycle oscillators
How diffusive coupling leads to different types of phase-locked synchronization The effect of global coupling and generalized synchronization via bifurcation analysis X1 Y1 x1 X2 Y2 x2 X5 Y5 X3 Y3 x3 X4 Y4 x4 Landsman and Schwartz, PRE 74, (2006)
10
Application 2: coupled lasers
Mutually coupled, time-delayed semi-conductor lasers Generalized synchronization can be used to understand complete synchronization of a group of lasers Laser1 Laser2 Laser3 A.S. Landsman and I.B. Schwartz, PRE 75, (2007),
11
Coherent power through delayed coupling architecture
Experiments with Delayed Coupling – N=2 Coupled lasers do not have a stable coherent in-phase state Two delay coupled semiconductor lasers: experiment showing stable out-of-phase state Time series synchronized after being shifted by coupling delay Each bar is a snap shot of a prediction of the flow. Time is flowing downward. The y-axis is distance to the wall from the center of the cylinder. The x-axis is the length to the wall. Blue is the measured signal, which is increased when the pump is perturbed stochastically around a given frequency. Heil et al PRL, (2001) Leaders and followers switch over time
12
1 2 3 Chaotic Synchronization of 3 semiconductor
lasers with mutual, time delayed coupling 1 2 3 Scaled equations of a single, uncoupled laser: y x y - intensity Weak dissipation: x - inversion
13
Problem: Explain synchronization of outside lasers in
a diffusively coupled, time-delayed, 3-laser system, with no direct communication between outside lasers Log(I1) Log(I2) time Log(I2) Log(I1) Log(I3) time Log(I3) time Log(I1)
14
3 mutually coupled lasers, with delays
2 Laser 3 coupling strengths: delay: dissipation: detuning: y - intensity x - inversion
15
Synchronized state Dynamics can be reduced to two coupled lasers 1 2 3
1,3 Above dynamics equivalent to Detuning: Laser 2 leads Laser 2 lags
16
Synchronization over the delay time is similar to generalized synchronization
Outside lasers can be viewed as identical, dissipative driven system during the time interval Laser 1 Laser 2 Laser 3 1 2 3 Stable synchronous state:
17
Analysis of dynamics close to the synchronization manifold
Symmetry: Outer lasers identical Synchronized solution: The outer lasers synchronize if the Lyapunov exponents transverse to the synchronization manifold are negative
18
Linearized dynamics transverse to the synchronization manifold
The synchronous state, is not affected by over the time interval of acts like a driving signal for Phase-space volume Abel’s Formula
19
Transverse Lyapunov exponents
for sufficiently long delays: Contracting phase-space volume Lyapunov exponents linear dependence of Lyapunov exponents on Synchronization due to dissipation in the outer lasers!
20
Effect of dissipation on synchronization: Numerical results
Sum of Lyapunov exponents Correlations 0.05 1.2 1.0 -0.05 -0.1 0.8 -0.15 0.6 -0.2 0.02 0.03 0.04 0.05 0.06 0.07 0.02 0.03 0.04 0.05 0.06 0.07 dissipation dissipation
21
Dependence of synchronization on parameters:
Condition for negative Lyapunov exponents Maximum fluctuations in depend on Less synchronization for increased coupling strengths, Better synchronization for longer delays, Better synchronization with increased dissipation,
22
Numerical results for synchronization as a function of delay
Correlations between the outer and the middle laser Correlations between outer lasers Sum of transverse Lyapunov exponents delay
23
Synchronization as a function of coupling strength
Correlations Sum of Lyapunov exponents Coupling strength Coupling strength
24
Laser Results Synchronization on the time scale of the delay, similar to generalized synchronization of driven dissipative systems Outer lasers become a function of the middle one Improved synchronization with increased dissipation “washes out” the difference in initial conditions Improved synchronization for longer delays Need sufficiently long times to average out fluctuations Less synchronization with increase in coupling strength Greater amplitude fluctuations, requiring longer delays for the outer lasers to synchronize
25
Discussion Conclusion
Synchronization phenomena observed in many systems (chaotic and regular) Chaotic Lasers Limit-cycle oscillators Phase-locking Complete synchronization Generalized synchronization Conclusion basic ideas from synchronization useful in studying a wide variety of nonlinear coupled oscillator systems
26
References A.S. Landsman and I.B. Schwartz, "Complete Chaotic Synchronization in mutually coupled time-delay systems", PRE 75, (2007), “A.S. Landsman and I.B. Schwartz, "Predictions of ultra-harmonic oscillations in coupled arrays of limit cycle oscillators”, PRE 74, (2006), A.S. Landsman, I.B. Schwartz and L. Shaw, “Zero Lag Synchronization of Mutually Coupled Lasers in the Presence of Long Delays”, to appear in a special review book on “Recent Advances in Nonlinear Laser Dynamics: Control and Synchronization”, Research Signpost, Volume editor: Alexander N. Pisarchik
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.