Download presentation
Presentation is loading. Please wait.
Published byDana Strickland Modified over 9 years ago
1
Suzanne Westbrook, PhD School of Information: Science, Technology, & Arts Computer Science Dept, UA
2
What is Computational Thinking (CT)? (Wing) “Computational thinking involves solving problems, designing systems, and understanding human behavior, by drawing on the concepts fundamental to computer science.” (NSF program solicitation for Cyber-Enabled Discovery and Innovation) “Computational thinking is defined comprehensively to encompass computational concepts, methods, models, algorithms, and tools. … [it] promises a profound impact on the Nation’s ability to generate and apply new knowledge.” What else?
3
Is CT new? Who thinks this way already? Counting Following directions Using abstraction – building things (small or complex) Solving problems by decomposition Other examples? We all use it every day!
4
So why isn’t everyone a computer scientist? What computer scientists do: Learn to solve all sorts of problems using: Problem abstraction Problem decomposition Data structures Algorithms Study “theory of computation” What is computable? How long does something take to solve? How can we model a solution to a problem?
5
“What computer scientists do” cont’d Use computers to implement our solutions Understand how computers work and how to make them work better, faster, more efficiently, (more computer engineering area) Work with people in other areas to solve interesting problems which often have large amounts of data to be stored and analyzed
6
Computing concepts can be applied to problems in other areas Scheduling issues – who gets to go next? For how long? Pipelining and pre-fetching – having info when you need it Deadlock – what if everything is waiting for each other? Who “gives”? “working set” – fast access to data; keeping frequently used things close by
7
More computing concepts Data representation (structures) Recursion Divide and conquer Backtracking Heuristics
8
Data Structures Examples Lists Stacks Queues Trees Hash tables Choice based on use – tradeoff of time versus space
9
Algorithms The really creative part! Is an algorithm “elegant”? Is one algorithm faster than another that does the same thing? Is it correct? How does it operate when the amount of data (size n) gets really large? Algorithms and data structures go hand in hand… Storing data – search, modify, insertion, deletion
10
Why might non-CS people want to know more about CT? To recognize how they use it already To stimulate “out of the box” ideas for solutions to their problems To more easily work with computer scientists in new ways – on multi-disciplinary teams You might find that you want to be a computer/computing scientist – the world needs more!
11
UA’s SISTA School of Information Sciences, Technology, and Arts Core set of 5 classes: Great Ideas in the Information Age, Computational Thinking and Doing, Dealing With Data, Ethics in a Digital World, Statistics Thematic courses: networks, sequences, others Opportunities for students to develop common understanding of CT and relationships across disciplines Increased opportunities for faculty to collaborate
12
Cool tech stuff for society – not just for Computer Scientists! Smart phones – do we still need PCs? Tablet PCs – making computers easier to use Robots – aerial robotics, medical robots, domestic robots… Computer vision CAVE – 3D immersive environment Surface computing – for example Microsoft’s Surface: http://www.microsoft.com/surface/http://www.microsoft.com/surface/ What else?
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.