Download presentation
Presentation is loading. Please wait.
Published byAshlie Floyd Modified over 9 years ago
1
FATIH UNIVERSITY Department of Computer Engineering Using Structures: Example Programs Notes for Ch.4 of Bratko For CENG 421 Fall03 Zeynep Orhan
2
FATIH UNIVERSITY Department of Computer Engineering Retrieving Structured Information Prolog is a suitable language for retrieving structured information from a database No need to specify all details about the object components Unspecified or partially specified objects are allowable See the examples of the book on page 98-99
3
FATIH UNIVERSITY Department of Computer Engineering Retrieving Structured Information Examples: Objects we are interested in Content+structure(with unspecifed parts) Need a better way of interaction with the database utility programs Utility programs can form the user interfaces
4
FATIH UNIVERSITY Department of Computer Engineering Retrieving Structured Information Each family has three components: husband, wife, and children, e.g.: family( person( tom, fox, date( 7, may, 1960), works( bbc, 15200)), person( ann, fox, date( 9, may, 1961), unemployed), [ person( pat, fox, date( 5, may, 1983), unemployed), person( jim, fox, data( 5, may, 1983), unemployed) ] ). Database and relations in ch4_1.pl 3 ?- family( H,W,C), total( [H,W|C],I), length([H,W|C],N), I / N < 10000.
5
FATIH UNIVERSITY Department of Computer Engineering Database family( person( tom, fox, date( 7, may, 1960), works( bbc, 15200)), person( ann, fox, date( 9, may, 1961), unemployed), [ person( pat, fox, date( 5, may, 1983), unemployed), person( jim, fox, data( 5, may, 1983), unemployed) ] ). family( person( marco, valtorta, date( 7, may, 1956), works( usc, 51000)), person( laura, valtorta, date( 12, january, 1958), works( self, 39000)), [ person( clara, valtorta, date( 10, september, 1984), unemployed), person( dante, valtorta, date( 7, april, 1995), unemployed) ] ).
6
FATIH UNIVERSITY Department of Computer Engineering Database-User Interface(cont’d) husband( X) :- family( X, _, _). wife( X) :- family( _, X, _). child( X) :- family( _, _, Children), member( X, Children). exists( Person) :- husband( Person); wife( Person); child( Person). dateofbirth( person( _, _, Date, _), Date). salary( person( _, _, _, works( _, S)), S). salary( person( _, _, _, unemployed), 0). /* total( List_of_people, Sum_of_their_salaries) */ total( [], 0). total( [ Person | List], Sum) :- salary( Person, S), total( List, Rest), Sum is S + Rest.
7
FATIH UNIVERSITY Department of Computer Engineering Doing Data Abstraction Data abstraction can be viewed as a process of organizing various pieces of information into natural units(possibly hierachically) – Structuring the information into some conceptually meaningfull form – details should be invisible to the user Programmer must be free and not think about how the information is actually represented
8
FATIH UNIVERSITY Department of Computer Engineering Solution I Define relations so that the user can access particular components of a family without knowing the details Selectors can be used to hide details of representation Name of the selector is an indicator of the component it is selecting. selector_relation(Object,Component_selected) Selectors given in the book
9
FATIH UNIVERSITY Department of Computer Engineering husband(family(Husband,_,_),Husband). wife(family(_,Wife,_), Wife). children(family(_,_,Children), Children ). firstchild(Family,First):- children(Family,[First|_]). secondchild(Family, Second):- children(Family,[_,Second|_]). Generalize to Nth child. nthchild(N,Family,Child):- children(Family,CL), nth_member(N,CL,Child).
10
FATIH UNIVERSITY Department of Computer Engineering Selectors for person Structure firstname(person(Name,_,_,_),Name). surname(person(_,SurName,_,_),SurName). born(person(_,_,Date,_),Date). What is the benefit of the selectors then? –Forget about the particular way of info. representation –Form/Manipulate these info:Know the selector names and use them
11
FATIH UNIVERSITY Department of Computer Engineering Benefits Easier than always referring to the representation explicitly. Easy modifications of the programs –We need to change the data representation to increase performance Change the selectors only The rest of the program will remain as unchanged
12
FATIH UNIVERSITY Department of Computer Engineering Simulating a Non-deterministic Automaton Non-deterministic finite automaton (NFA) –accepts or rejects a string of symbols –has states –has transitions (possibly silent) –represented by a directed graph with self loops with distinguished final states and initial state (e.g. fig. 4.3) –string is accepted if there is a transition path s.t. it starts with the initial state it ends with a final state the arc labels along the path correspond to the complete input string
13
FATIH UNIVERSITY Department of Computer Engineering Simulation of NFA (II) To simulate an NFA in Prolog, we need: final/1, which defines the finals states trans/3, s.t. trans(S1,X,S2) means that a transition from S1 to S2 is possible when X is read silent/2 s.t. silent( S1,S2) means that a silent move is possible from S1 to S2.
14
FATIH UNIVERSITY Department of Computer Engineering nfa.pl 6 ?- length(Str,7), accepts(S,Str). Str = [a, a, a, a, a, a, b] S = s1 ; 5 ?- accepts(S, String), length(String, 7). ERROR: Out of local stack 12 ?- accepts(s1,S). ERROR: Out of local stack Why? –If the length of the input string is not limited, the recursion will never hit the empty list: the first clause will be missed. When the input string is limited, after exhausting all possible transitions consistent with it, the input will become empty and the first clause will be used.
15
FATIH UNIVERSITY Department of Computer Engineering /* Example of NFA simulation, Bratko, Section 4.3, Figure 4.3 */ final( s3). trans( s1, a, s1). trans( s1, a, s2). trans( s1, b, s1). trans( s2, b, s3). trans( s3, b, s4). silent( s2, s4). silent( s3, s1). accepts( State, []) :- final( State). % Accepts empty string accepts( State, [ X | Rest]) :- trans( State, X, State1), accepts( State1, Rest). accepts( State, String) :- silent( State, State1), accepts( State1, String).
16
FATIH UNIVERSITY Department of Computer Engineering Travel Agent Program to give advice about air travel timetable(Place1,Place2,ListOfFlights) ListOfFlights holds terms of the form DepartureTime/ArrivalTime/FlightNumber/ListOfDays, where / is an infix operator, e.g., timetable( london, edinburgh, [9:40 / 10:50 / ba4733 / alldays, 19:40 / 20:50 / ba4833 / [mo,tu,we,th,fr,su] ] ).
17
FATIH UNIVERSITY Department of Computer Engineering Finding Routes route( Place1, Place2, Day, Route), where Route is a sequence of flights that satisfy: the start point of the route is Place1 the end point is Place2 all the flights are on the same Day of the week all the flights in Route are in the timetable relation there is enough time for transfer between flights
18
FATIH UNIVERSITY Department of Computer Engineering Auxiliary Predicates flight( Place1,Place2,Day,FlightNum,DepTime,ArrTime). deptime( Route, Time). transfer( Time1, Time2). Note the similarity between the NFA simulation and the route finding problem: –states cities –transitions flights –path between initial and final state route between start and end city
19
FATIH UNIVERSITY Department of Computer Engineering Route Relation Direct connection: route( Place1, Place2, Day, [Place1/Place2/Fnum/Dep]) :- flight( Place1, Place2, Day, Fnum, Dep, Arr). Indirect connection with sufficient transfer time: route( P1,P2,Day,[P1/P3/Fnum1/Dep1 | RestRoute]) :- route( P3,P2,Day,RestRoute), flight( P1,P3,Day,Fnum1,Dep1,Arr1), deptime( RestRoute, Dep2), transfer( Arr1,Dep2).
20
FATIH UNIVERSITY Department of Computer Engineering % Figure 4.5 A flight route planner and an example flight timetable. % A FLIGHT ROUTE PLANNER :- op( 50, xfy, :). % route( Place1, Place2, Day, Route): % Route is a sequence of flights on Day, starting at Place1, ending at Place2 route( P1, P2, Day, [ P1 / P2 / Fnum / Deptime ] ) :- % Direct flight flight( P1, P2, Day, Fnum, Deptime, _). route( P1, P2, Day, [ (P1 / P3 / Fnum1 / Dep1) | RestRoute] ) :- % Indirect connection route( P3, P2, Day, RestRoute), flight( P1, P3, Day, Fnum1, Dep1, Arr1), deptime( RestRoute, Dep2), % Departure time of Route transfer( Arr1, Dep2). % Enough time for transfer
21
FATIH UNIVERSITY Department of Computer Engineering flight( Place1, Place2, Day, Fnum, Deptime, Arrtime) :- timetable( Place1, Place2, Flightlist), member( Deptime / Arrtime / Fnum / Daylist, Flightlist), flyday( Day, Daylist). flyday( Day, Daylist) :- member( Day, Daylist). flyday( Day, alldays) :- member( Day, [mo,tu,we,th,fr,sa,su] ). deptime( [ P1 / P2 / Fnum / Dep | _], Dep). transfer( Hours1:Mins1, Hours2:Mins2) :- 60 * (Hours2 - Hours1) + Mins2 - Mins1 >= 40. member( X, [X | L] ). member( X, [Y | L] ) :- member( X, L).
22
FATIH UNIVERSITY Department of Computer Engineering % A FLIGHT DATABASE timetable( edinburgh, london, [ 9:40 / 10:50 / ba4733 / alldays, 13:40 / 14:50 / ba4773 / alldays, 19:40 / 20:50 / ba4833 / [mo,tu,we,th,fr,su] ] ). timetable( london, edinburgh, [ 9:40 / 10:50 / ba4732 / alldays, 11:40 / 12:50 / ba4752 / alldays, 18:40 / 19:50 / ba4822 / [mo,tu,we,th,fr] ] ). timetable( london, ljubljana, [ 13:20 / 16:20 / jp212 / [mo,tu,we,fr,su], 16:30 / 19:30 / ba473 / [mo,we,th,sa] ] ). timetable( london, zurich, [ 9:10 / 11:45 / ba614 / alldays, 14:45 / 17:20 / sr805 / alldays ] ). timetable( london, milan, [ 8:30 / 11:20 / ba510 / alldays, 11:00 / 13:50 / az459 / alldays ] ). timetable( ljubljana, zurich, [ 11:30 / 12:40 / jp322 / [tu,th] ] ). timetable( ljubljana, london, [ 11:10 / 12:20 / jp211 / [mo,tu,we,fr,su], 20:30 / 21:30 / ba472 / [mo,we,th,sa] ] ). timetable( milan, london, [ 9:10 / 10:00 / az458 / alldays, 12:20 / 13:10 / ba511 / alldays ] ). timetable( milan, zurich, [ 9:25 / 10:15 / sr621 / alldays, 12:45 / 13:35 / sr623 / alldays ] ). timetable( zurich, ljubljana, [ 13:30 / 14:40 / jp323 / [tu,th] ] ). timetable( zurich, london, [ 9:00 / 9:40 / ba613 / [mo,tu,we,th,fr,sa], 16:10 / 16:55 / sr806 / [mo,tu,we,th,fr,su] ] ). timetable( zurich, milan, [ 7:55 / 8:45 / sr620 / alldays ] ).
23
FATIH UNIVERSITY Department of Computer Engineering Full Program fig4_5.pl As for the NFA simulation program, to avoid infinite loops, make sure to limit the length of the route. E.g., 3 ?- route( rome,edinburgh,mo,R). gives an infinite loop, while the following does not: 6 ?- conc(R,_,[_,_,_,_]), route(rome, edinburgh,mo,R). No conc generates routes in order of increasing length, so that shorter routes are tried first
24
FATIH UNIVERSITY Department of Computer Engineering More Infinite Looping Trouble ?- route( ljubljana, edinburgh, th, R). R = [ljubljana/zurich/jp322/11:30, zurich/london/sr806/16:10, london/edinburgh/ba4822/18:40] ; Action (h for help) ? abort % Execution Aborted ?- conc( R,_,[_,_,_,_]), route( ljubljana, edinburgh, th, R). R = [ljubljana/zurich/jp322/11:30, zurich/london/sr806/16:10, london/edinburgh/ba4822/18:40] ; No
25
FATIH UNIVERSITY Department of Computer Engineering Eight Queens: Program 1 How to place 8 queens on a cheesboard, so that they do not attack each other solution(Pos) if Pos is a solution to the problem Positions are represented by a list of squares where the queen is sitting, e.g: [1/4,2/2,3/7,4/3,5/6,6/8,7/5,8/1] (fig.4.6, a solution) We generalize to square boards of any size, so that we can use induction
26
FATIH UNIVERSITY Department of Computer Engineering Program 1, ctd. solution( [ ]). solution( [X/Y | Others]) :- solution( Others), member( Y, [1,2,3,4,5,6,7,8]), noattack( X/Y, Others). This shows how to add a queen to extend a partial solution
27
FATIH UNIVERSITY Department of Computer Engineering Program 1, ctd. noattack( _,[ ]). noattack( X/Y, [X1/Y1 | Others] ) :- Y =\= Y1, % Different Y-coordinates Y1-Y =\= X1-X, % Different diagonals Y1-Y =\= X-X1, noattack( X/Y, Others). The full program is in fig4_7.pl Finds all (92) solutions upon backtracking and stops
28
FATIH UNIVERSITY Department of Computer Engineering % Figure 4.7 Program 1 for the eight queens problem. % solution( BoardPosition) if % BoardPosition is a list of non-attacking queens solution( [] ). solution( [X/Y | Others] ) :- % First queen at X/Y, other queens at Others solution( Others), member( Y, [1,2,3,4,5,6,7,8] ), noattack( X/Y, Others). % First queen does not attack others noattack( _, [] ). % Nothing to attack noattack( X/Y, [X1/Y1 | Others] ) :- Y =\= Y1, % Different Y-coordinates Y1-Y =\= X1-X, % Different diagonals Y1-Y =\= X-X1, noattack( X/Y, Others). member( Item, [Item | Rest] ). member( Item, [First | Rest] ) :- member( Item, Rest). template( [1/Y1,2/Y2,3/Y3,4/Y4,5/Y5,6/Y6,7/Y7,8/Y8]). % template/1 is just for easy use of the program. Asking for a solution: ?- template(S), solution(S). S = [1/4, 2/2, 3/7, 4/3, 5/6, 6/8, 7/5, 8/1] ; S = [1/5, 2/2, 3/4, 4/7, 5/3, 6/8, 7/6, 8/1] ; S = [1/3, 2/5, 3/2, 4/8, 5/6, 6/4, 7/7, 8/1] ; S = [1/3, 2/6, 3/4, 4/2, 5/8, 6/5, 7/7, 8/1] ; S = [1/5, 2/7, 3/1, 4/3, 5/8, 6/6, 7/4, 8/2] ; S = [1/4, 2/6, 3/8, 4/3, 5/1, 6/7, 7/5, 8/2] ;... In the book and the example programs there are two more 8-queens programs. Compare them yourself!
29
FATIH UNIVERSITY Department of Computer Engineering Eight Queens: Program 2 Represent X queen position by their position in the position list: –[1/Y1, 2/Y2, …., 8/Y8] is replaced by –[Y1, Y2, …., Y8] Generate an ordering of the Y positions, then test that position: solution( S) :- permutation( [1,2,3,4,5,6,7,8], S), %generate safe(S). %test
30
FATIH UNIVERSITY Department of Computer Engineering Program 2, ctd. noattack/2 is generalized to noattack/3, where the third argument represents the X distance (column distance) of two queens Full program in fig4_9.pl To get all solutions, do: ?- setof( S, solution(S), L), length( L,N). S = _G405 L = [[1, 5, 8, 6, 3, 7, 2, 4], [1, 6, 8, 3, 7, 4, 2|...], [1, 7, 4, 6, 8, 2|...], [1, 7, 5, 8, 2|...], [2, 4, 6, 8|...], [2, 5, 7|...], [2, 5|...], [2|...], [...|...]|...] N = 92
31
FATIH UNIVERSITY Department of Computer Engineering % Figure 4.9 Program 2 for the eight queens problem. % solution( Queens) if % Queens is a list of Y-coordinates of eight non- attacking queens solution( Queens) :- permutation( [1,2,3,4,5,6,7,8], Queens), safe( Queens). permutation( [], [] ). permutation( [Head | Tail], PermList) :- permutation( Tail, PermTail), del( Head, PermList, PermTail). % Insert Head in permuted Tail % del( Item, List, NewList): deleting Item from List gives NewList del( Item, [Item | List], List). del( Item, [First | List], [First | List1] ) :- del( Item, List, List1). % safe( Queens) if % Queens is a list of Y-coordinates of non- attacking queens safe( [] ). safe( [Queen | Others] ) :- safe( Others), noattack( Queen, Others, 1). noattack( _, [], _). noattack( Y, [Y1 | Ylist], Xdist) :- Y1-Y =\= Xdist, Y-Y1 =\= Xdist, Dist1 is Xdist + 1, noattack( Y, Ylist, Dist1).
32
FATIH UNIVERSITY Department of Computer Engineering Eight Queens: Program 3 Program 3 uses a redundant representation of the board, with –columns, x, 1 through 8 –rows, y, 1 through 8 –upward diagonals, u = x – y, -7 through 7 –downward diagonals, v = x + y, 2 through 16 When a queen is placed, its column, row, and diagonals are removed from consideration pl4_11.pl
33
FATIH UNIVERSITY Department of Computer Engineering % Figure 4.11 Program 3 for the eight queens problem. % solution( Ylist) if % Ylist is a list of Y-coordinates of eight non- attacking queens solution( Ylist) :- sol( Ylist, % Y-coordinates of queens [1,2,3,4,5,6,7,8], % Domain for X-coordinates [1,2,3,4,5,6,7,8], % Domain for Y-coordinates [-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7], % Upward diagonals [2,3,4,5,6,7,8,9,10,11,12,13,14,15,16] ). % Downward diagonals sol( [], [], Dy, Du, Dv). sol( [Y | Ylist], [X | Dx1], Dy, Du, Dv) :- del( Y, Dy, Dy1), % Choose a Y-coordinate U is X-Y, % Corresponding upward diagonal del( U, Du, Du1), % Remove it V is X+Y, % Corresponding downward diagonal del( V, Dv, Dv1), % Remove it sol( Ylist, Dx1, Dy1, Du1, Dv1). % Use remaining values del( Item, [Item | List], List). del( Item, [First | List], [First | List1] ) :- del( Item, List, List1).
34
FATIH UNIVERSITY Department of Computer Engineering Eight Queens: Efficiency The second program is the least efficient: ?- time( setof( S, solution(S), L)). % 1,139,743 inferences in 1.10 seconds (1034640 Lips) In general, generate-and-test is inefficient: it is best to introduce constraints as early as possible in the solution design process First program: ?- time( setof( S, solution1(S), L)). % 171,051 inferences in 0.22 seconds (776387 Lips) Third program: 1 ?- time( setof( S, solution(S), L)). % 120,544 inferences in 0.15 seconds (802471 Lips)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.