Download presentation
1
Acid, Base, Electrolytes
Balance and Alterations
2
Fluid Compartments
3
Fluid Compartments: 20 – 40 – 60 Rule
4
Fluid Movement
5
Water and Electrolyte Balance
Input = output Hormones Na+ / K+ Renin Aldosterone ANP Reproductive Hormones GCC Ca++ / Mg++ Calcitonin PTH H2O ADH Anions follows passively Cl- HCO3- PO4=
6
Water Intake Loss Osmosis Hormonal control Capillary Dynamics Normal
Abnormal Osmosis Hormonal control Capillary Dynamics CHP COP IHP IOP
7
Osmosis
8
Capillary Dynamics
9
Capillary Pressures
10
Fluid Shift to third space
Edema Effusion Transudate Low cell Low protein Exudate Types: Nonseptic, Septic Contents High cell High protein
11
Edema Causes Vessels Types Obstruction Overload Inflammation
hypoalbuminemia Vessels Angioedema Lymphedema Types Localized Pitting Weeping Dependent Generalized
12
Pulmonary Edema
13
Pleural Effusion
14
Terminology Isotonic Hypertonic Hypotonic Hypovolemia Hypervolemia
Hyperosmolar Hypotonic Hypo-osmolar
15
Functions of electrolytes
16
Electrolyte Fluid Composition
18
Hormones that regulate Electrolytes
Aldosterone ANP PTH Cacitriol Calcitonin
19
Cations + charge Location Function Hormonal Controls Alterations Hypo-
Hyper-
20
Hyponatremia < 135 mEq/L Etiology Clinical Signs H20 shift to ICF
Decreased Na+ (diet) Increased H20 Diuretics Hiridosis Addison’s Disease DM Diarrhea CRF Clinical Signs H20 shift to ICF Cells swell CNS sensitive V/D Lethargy Confusion Seizures Muscle weakness
21
Hyponatremia
22
Hypernatremia > 147 mEq/l Etiology Clinical Signs Osmotic shrinkage
Excessive intake Hyperaldosteronism Drowning (salt water) H20 loss DI Renal Fever / Sweat Burns Diarrhea Clinical Signs Osmotic shrinkage CNS sensitive Lethargy Irritability Hemorrhage Seizures Coma Muscle weakness
23
Hypokalemia < 3.5 mEq/l Etiology Clinical Signs Decreased RMP
Decreased intake ANS V/D Diuretic Sweating Digitalis Insulin excess Clinical Signs Decreased RMP Heart dysrhythmia Bradycardia AV blocks PVCs Sphincter weakness Delayed cardiac repolarization ST segment depression T decreased/inverted
24
Hyperkalemia > 5.5 mEq/l Etiology Clinical Signs
Increased intake Insulin deficiency Hemolysis Hypoxia CRF Diuretics Burns Extensive surgeries Clinical Signs Inactivate Na+ channels Muscle weakness Muscle paralysis paralysis Cardiac dysrhythmia Peaked T wave Widened QRS
25
Hypocalcemia < 8.5 mg/dL Etiology Clinical Signs NMJ irritability
Nutritional deficiency Osteoblastic metastasis PTH deficiency Hyperphosphatemia Increased protein binding Chelation therapy Clinical Signs NMJ irritability Muscle Spasm Dyspnea Seizures Colic Tetany Cardiac Dysrhythmia
26
Hypercalcemia > 10.5 mg/dL Etiology Clinical Signs NMJ decreased
Cancer Hyperparathyroidism Bone remodeling Increased reanal filtering Clinical Signs NMJ decreased Fatigue Lethargy Weakness Cardiac dysrhythmia Bone loss Urolithiasis
27
Hypomagnesemia < 1.5 mEq/l Seen with hypokalemia and hypocalcemia
Etiology Decreased dietary intake GI loss Malabsorption Maldigestion Diarrhea CRF Clinical Signs Decreased threshold Tetany Vertigo Nystagmus Muscle spasms hyperreflexia Seizures Cardiac Dysrhythmia
28
Hypermagnesemia > 2.5 mEq/l Etiology Clinical Signs
Excess intake (antacids) Decreased renal excretion CRF Adrenal insufficiency Clinical Signs Increased threshold for depolarization Muscle weakness Decreased reflexes Hypotension Decrease Na+ current Cardiac dysrhythmia Bradycardia
29
Anions Chloride ECF Alterations Phosphate ICF, stored in bones
Hypochloremia < 95 mEq/L Accompanies hyponatremia Severe vomiting Diuretics Hyperchloremia > 103 mEq/L Accompanies hypernatremia Phosphate ICF, stored in bones Alterations Hypophosphatemia < 2.7 mg/dL Antacid use Prolonged decrease cam cause Rickets/’Osteomalacia Hyperphosphatemia > 4.5 mg/dL Renal failure Overuse of laxatives Hypoxia
30
Acid Base Terms Define pH Acid Base Salt Buffer Strong Weak
Volatile : CO2 from CH20 and Fat Metabolism Nonvolatile: H2SO4, H2PO4 from protein metabolism Base Salt Buffer
31
Acid Sources
33
pH Define Water Dissociation Scale Blood values Abnormal Values
pH = log (1/[H+]) pH = -log [H3O+] Water Dissociation H2O + H2O H3O+ + OH- Scale Blood values Venous Arterial Abnormal Values Acidemia Alkalemia
34
pH formula and scale
35
Acid Base Chart
36
pH of Solutions
37
Acid Base Regulation for Balance
Systems Chemical Buffer Systems Respiratory System Renal Time Seconds to Minutes Minutes to Hours Hours to Days / Weeks Strength Problems (reference 7.4 as normal average): + / changes result in respiratory rate changes + / to 0.3 changes result in CV and Nervous changes + / to 0.5 changes result in death
38
Chemical Buffer Systems
Define 3 types Name of System Buffer formula or name of chemical Location Effectiveness [pKa buffer = pH location] Why important
39
pH changes with/without buffers
40
Bicarbonate Chemical Buffer
H2CO3, HCO3- Plasma buffer pK = 6.1 Important: Can measure components pCO2 = 40 mmHg HCO3- = 24 mM Can adjust concentration / ratio of components kidneys lungs Recalculate pH of buffer system in ECF using Henderson-Hasselbach pH = log(24 / 0.03x40) pH = log (20/1) pH = 7.4
41
Bicarbonate Buffer System
42
Phosphate Chemical Buffer
H2PO4-, HPO4= ICF, Urine pK = 6.8 Important Intracellular buffer ICF pH = ~ 6.5 – 6.8 Renal Tubular Fluids Urine pH ranges 6.0 – 7.0
43
Protein Chemical Buffer
Proteins With Histadine: AA contain imidazole ring, pKa = 7.0 R-COOH R-COO- + H+ R-NH2 R-NH3+ ICF (hemoglobin), ECF pK = 7.4 Important Most numerous chemicals Most powerful chemical buffer
44
Proteins in acid base
45
Hemoglobin
46
CO2 transport and RBC buffer
47
Respiratory for A/B Balance
Occurs in minutes CO2 only Rate changes
48
Respiratory Controls for Acid /Base balance
Volatile Acid: CO2 pH changes in CSF Respiratory Rate Pons Medulla Oblongata Chemoreceptors pCO2 pO2
49
CO2 and pH Increase CO2 Decrease CO2 Increase H+ Decrease H+
Decrease pH Decrease CO2 Decrease H+ Increase pH
50
Renal Control for Long Term Acid / Base Balance
51
Renal processes in A/B balance
52
Renal Physiology Filtration Reabsorption Secretion
Remove metabolic acids: Ketones, Uric acid Filter Base [HCO3-] @ Renal Filtration Membrane Reabsorption PCT Reverse CO2 equation to create HCO3- Secretion PCT, late DCT and Cortical CD CO2 equation to create H+ for secretion
53
Renal Mechanisms for A/B
54
Renal Ion Exchanges Na+ / K+ antiporter Na+ / H+ antiporter
Na+ / HCO3- cotrans H+ / K+ ATPase H+ ATPase Cl- / HCO3- exchanger
55
Renal Buffer Mechanisms
56
Normal Acid Base Values
57
Respiratory and Renal Balance
58
Acid-Base Problems Acidosis Acidemia Alkalosis Alkalemia
State of excess H+ Acidemia Blood pH < 7.35 Alkalosis State of excess HCO3- Alkalemia Blood pH >7.45
59
Classifying Respiratory Acid Base Problems (pCO2 changes)
Respiratory Acidosis Respiratory Rate Decreases Any Respiratory Disease Obstruction Pneumonia Gas exchange / transport problems Respiratory Membrane RBC / Hemoglobin Respiratory Alkalosis Respiratory Rate Increases
61
Classifying Metabolic Acid Base Balance Problems (H+/ HCO3-)
Systems Renal Endocrine GI Cardiovascular / Fluid administration Metabolic Acidosis Retain Acid Lose Base Metabolic Alkalosis Retain Base Lose Acid
63
Other System diseases in Metabolic Acid/Base Problems
GI Vomiting Diarrhea Medications : Antacids Endocrine DM Hyperaldosteronism Metabolism Increase acid production
64
Ketones
67
Compensation
68
Adjustments for Acid/Base Balance
Imbalance Respiratory Acidosis Incr pCO2 Respiratory Alkalosis Decr pCO2 Metabolic Acidosis Decr HCO3- Incr H+ Metabolic Alkalosis Incr HCO3- Decr H+ Compensation Increase renal acid excretion, Incr HCO3- Decrease renal acid excretion, decr HCO3- Hyperventilate to lower pCO2 Hypoventilate to increase pCO2
69
Summary for A/B Balance
70
Questions? Water and electrolytes
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.