Download presentation
Presentation is loading. Please wait.
Published byMagnus Warren Modified over 9 years ago
1
Poznamka: Velmi se omlouvam se za zpozdeni, zakon schvalnosti pracuje az priliz dobre. Prezentace jeste neni dokonale kompletni. Velmi bych velmi ocenil jakekoli primominky, navrhy a rady. Omlouvam se a mnohokrat dekuji, Jindrich Fixa
2
10/4/20152
3
Fusion the energy of the future? I. Fusion II. Tokamaks III. History vs. the future
4
Fusion the energy of the future? I. Fusion <- II. Tokamaks III. History vs. the future
5
I. Fusion: a) Why fusion ? b) Fusion reactions c) Plasma in nature d) Plasma definition
6
a)Why fusion ? Ecology Safety Fuel effective Fuel resources
7
a)Why fusion ? – Fuel resources Gigajoules (10 9 joules)Divided by world annual energy consumption per year ( Present consumption3 * 10 11 1 year Coal1.0 * 10 14 300 years Oil1.2 * 10 13 40 years Natural gas1.4 * 10 13 50 years Uranium 235 (fission)10 13 30 years Uranium 238 and thorium 232 (breeder reactors)10 16 30 000 years Lithium (D-T fusion reactors) - Land - Oceans 10 16 10 19 30 000 years 30* 10 6 years
8
b) Fusion reactions: D + D -> 3 He + n + 3.2 MeV D + D -> T + p + 4.0 MeV D + T -> 4 He + n + 17.6 MeV
9
d) Plasma definition The plasma approximation Bulk interactions Plasma frequency
10
c) Plasma in nature 99% of the space is made up form plasma yet there is almost none on Earth
11
Fusion the energy of the future? I. Fusion II. Tokamaks <- III. History vs. the future
12
II. Tokamaks: a) Fusion and tokamaks b) Ignition condition c) Plasma confinement d) Tokamak reactor e) Tokamak economics
13
Before we begin: The system units m.k.s. Temperatures – J or eV (or keV)
14
a) Fusion and tokamaks D + T -> 4 He + n + 17.6 MeV Most promising method of supplying energy
15
b) Thermonuclear fusion Most promising method of supplying energy Heating methods:
16
b) Ignition condition ignition temperature is 10-20 keV -+10%
17
c) Plasma confinement Poloidal coil (Primary + t oroidal coil)
18
d) Tokamak reactor Blanket Vacuum Vessel
19
e) Tokamak economics Total cost Direct cost 65% Indirect cost 25% Contingency 10% Direct cost Reactor 50-60% Conventional plant 35-30% Structures 15-10% Reactor cost Coils30%Heat transfer15% Shield10%Auxiliary power 15% Blanket 10%Other components20%
20
Fusion the energy of the future? I. Fusion II. Tokamaks III. History vs. the future <-
21
III. History vs. the future a) Historical milestones b) Tokamak development c) ITER on it’s way
22
a) Historical milestones 1905 – A. Einstein: E = m * c 2 1920 - A.S. Eddington: Energy source in stars 1928 - I. Langmur: “Plasma” 1934 – E. Rutherford: D+D fusion 1957 - J.D. Lawson: Lawson criteria 1960 – I.A.Kuechatov: Lecture at Harvell 1983 – JET 1991 – JET – D-T combination as a fuel
23
b) Tokamak development 2015 – ITER – first physic experiments 2014 – DEMO – project begins 2024 – ITER – technological experiments 2024 – DEMO – construction 2032 – DEMO– start 2034 – ITER – deconstruction 2046 – DEMO – deconstruction 2050 – First fusion power plant?
24
c) ITER on it’s way Where? - France - Cadarache When? - First experiments are planed to 2014 How?- Together and with class 500-700MW
25
d) Look into the future
26
What future holds ? ITER 3x bigger then the biggest current tokamak in the world.
27
Recapitulation So why is it not here yet ? Expensive development Initial investment Is fusion the energy of the future ? Safe Effective Resourceful Cheap to run
28
Source: Tokamaks - John Wesson (Oxford science publications) Focus On: JET - The European Center of Fusion Research - Jan Mlynář The science of JET - John Wesson Úvod do fyziky plazmatu - Francis F. Chen Řízená termojaderná syntéza pro kazdeho - Milan Řípa, Vladimír Weinzettl, Jan Mlynář, František Žáčekg Web of science Science Direct
29
Thanks to : Milan Řípa Jan Mlynář Jan Horácek Vojtěch Svoboda
30
Jindrich Fixa 10/4/201530
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.