Download presentation
Presentation is loading. Please wait.
Published byMitchell Murphy Modified over 9 years ago
2
Topological defects creation at fast transition: Kibble mechanism and Zurek scenario Experiments with neutrons: Vortex creation in 3He+n reaction Dark matter search Muons and electrons scintillation A-B transition in 3 He Aurora de Venice versus Baked Alaska Q-ball in 3 He-B Persistent induction signal COSLAB and TOPDIF Grenoble connection Yuriy M. Bunkov C R T B T – C N R S, Grenoble, France
3
E A e i Suprconducters, 4 He, 1/4
4
4 He experiment: Lancaster University Fast pressure release. P.C.Hendry, N.S Lawson, R.A.M. Lee, P.V.E. McClintock, C.H.D. Williams, Nature, 368, 315 (1994) T P Superfluid Solid Liquid No conformation at better prepared experiments 2K 3 He experiments: Lancaster Grenoble and Helsinki fast cooling after a localise heating from 3 He neutron nuclear reaction n + 3 He = p + 3 H + 764 keV C. Bauerle, Yu.M.Bunkov, S.N.Fisher, H. Godfrin, G.R.Pickett, Nature, 382, 332 (1996) V.M.H. Ruutu, V.B.Eltsov, A.J.Gill, T.W.B. Kibble, M. Krusius, Yu.G. Makhlin, B. Placcais, G.E. Volovik, W. Xu, Nature, 382, 334, (1996) P T Solid Liquid Superfluid B A Helsinki Grenoble + rotation 1mK D.I. Bradley, Yu.M.Bunkov, D.J.Cousins, M.P.Enrico,S.N.Fisher, M.R.Follows, A.M.Guénault, W.M.Hayes, G.R.Pickett, T.Sloan, Phys. Rev. Lett., v. 75. p. 1887, (1995)
5
Yuriy M. Bunkov Henri Godfrin Eddy Collin Matty Krusius Shaun Fisher Derek J. Cousins Cristopher. Bäuerle Ann-Sophie Chen Clemens Winkelmann Johannes Elbs
6
Superfluid 3 He bolometry
9
n + 3 He = p + 3 H + 764 keV
11
scintillation Grenoble 1995
12
scintillation Grenoble 1995 Theory: V.B. Eltsov, M. Krusius, G.E. Volovik Progress Low Temp Phys 2005
13
scintillation Grenoble 1995 Theory: V.B. Eltsov, M. Krusius, G.E. Volovik Progress Low Temp Phys 2005 Grenoble 2004
14
scintillation Grenoble 2004 Grenoble 1995 Theory: V.B. Eltsov, M. Krusius, G.E. Volovik Progress Low Temp Phys 2005 Grenoble 2005
15
1/√T Bolometric calibration by pulsed heating A
16
G.M.SeidelG. R. Pickett H. Godfrin In 3He + n reaction 9% +- 1% of energy going for scintillation
17
From the fit, the energy emitted into a solid angle of 4 steradians is 87 keV, or 24% of the total energy of the 364 keV electron. In contrast, for an alpha particle stopped in helium we found, upon correcting for reflectivity, that only 10% of the initial energy of the particle is emitted as uv radiation. Journal of Low Temperature Physics, Vol. 113, 5/6, 1998
18
scintillation Grenoble 2004 Grenoble 1995 Theory: V.B. Eltsov, M. Krusius, G.E. Volovik Progress Low Temp Phys 2005 Grenoble 2005
19
Analysis and simulation LPSC (GEANT4) Detection of cosmic muons: good agreement experience/simulation if f UV (muons) ≈ 25 %
20
coincidence W mes (Hz) time (s) 260 262 264 266 0100200300 W(t) (mHz) temps (s) 10 keV Time (s)
21
cell A (without source) cell B (with source) Electron detection spectrum resolution of low energy emission spectrum of 57 Co Comparison to 14 keV peak with bolometric calibration Energy deficit of f UV (e -,14keV)≈265% UV Scintillation S/B>5 Analysis LPSC, d5, B=100 mT, W0=430 mHz
22
The idea : Use the Bose –Einstein condensed coherent quantum state of superfluid 3 He at a limit of extremely low temperatures as a sensitive medium for the direct bolometric search of non-baryonic Dark Matter First suggestion G.R.Pickett in Proc. «Second european worshop on neutrinos and dark matters detectors», ed by L.Gonzales-Mestres and D.Perret-Gallix, Frontiers, 1988, p. 377. Yu.Bunkov, S.Fisher, H.Godfrin, A.Guenault, G.Pickett. in Proc. « International Workshop Superconductivity and Particles Detection (Toledo, 1994)», ed. by T.Girard, A.Morales and G.Waysand. World Scientific, p. 21-26. Ultra Low Temperature Instrumentation for Measurements in Astrophysics
23
Bose – Einstein condensed coherent quantum state with rear gas of collective excitations. At about 100 mK at 0.1 cm3 remains At about 100 mK at 0.1 cm3 remains only 10 keV from the level of absolute zero of temperature. Temperature is the density of quasiparticles, that measured directly by damping of mikro vibrating wire. The deposited energy is intimately associated with the 3He nuclear. There is no isolated nuclear thermal bath, separated from electronic and phononic subsystems!
24
Candidates What is the dark matter made of ? The non-baryonic candidate zoo Gianfranco Bertonea, Dan Hooperb, Joseph Silkb, Physics Reports 405 (2005) 279–390 Standard Model neutrinos < 0.07 Sterile neutrinos (without Standard Model weak interactions) Axions Introduced in an attempt to solve the problem of CP violation in particle physics Supersymmetric candidates Neutralinos WIMP Sneutrinos (superpartners of the Standard Model neutrinos in supersymmetric models) Gravitinos (superpartners of the graviton in supersymmetric models.) Axinos (superpartner of the axion,) Light scalar dark matter (fermionic dark matter candidates) Dark matter from little Higgs models Kaluza–Klein excitations of Standard Model fields which appear in models of universal extra dimensions Superheavy dark matter called Wimpzillas, Q-balls, mirror particles, CHArged Massive Particles (CHAMPs), self interacting dark matter, D-matter, cryptons, superweakly interacting dark matter, brane world dark matter, heavy fourth generation neutrinos, etc.
25
100g 3 He detector Spin dependent interaction For spin dependent interaction 100g 3 He = 30 kg Ge
26
scintillation Grenoble 2004 Grenoble 1995 Theory: V.B. Eltsov, M. Krusius, G.E. Volovik Progress Low Temp Phys 2005 Grenoble 2005
27
P T Solid Liquid Superfluid B A Helsinki Grenoble + rotation 1mK 70 m10 m 1 m p 3H-3H- Meyer, Sloan, JLTP 1998 D(0bar) = 21 cm 2 /s; R=27 m D(19bar) = 0.94 cm 2 /s; R=12 m
28
E A e i Suprconducters, 4 He, A ik e i 3 He, Universe A ik ik Bunkov and Timofeevskaya modification of Kibble-Zurek theory PRL 1998 3 He-A Inflation of B phase in the space of A phase Transition triggered by radiation (Osheroff) “Baked Alaska” due to Leggett does not work Volovik suggestion, LT, Praga, 1996
29
18 D manifold B P T Solid Liquid Superfluid B A A – B transition
30
P T Solid Liquid Superfluid B A A – B transition
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.