Presentation is loading. Please wait.

Presentation is loading. Please wait.

First Principles Thermoelasticity of Minerals: Insights into the Earth’s LM Problems related with seismic observations T and composition in the lower mantle.

Similar presentations


Presentation on theme: "First Principles Thermoelasticity of Minerals: Insights into the Earth’s LM Problems related with seismic observations T and composition in the lower mantle."— Presentation transcript:

1 First Principles Thermoelasticity of Minerals: Insights into the Earth’s LM Problems related with seismic observations T and composition in the lower mantle Origin of lateral heterogeneities Origin of anisotropies How and what we calculate MgSiO 3 -perovskite MgO Geophysical inferences Renata M. Wentzcovitch U. of Minnesota (USA) and SISSA (Italy)

2 The Contribution from Seismology Longitudinal (P) waves Transverse (S) wave from free oscillations

3 PREM (Preliminary Reference Earth Model) (Dziewonski & Anderson, 1981) 024135329364 P(GPa)

4 Mantle Mineralogy SiO 2 45.0 MgO 37.8 FeO 8.1 Al 2 O 3 4.5 CaO 3.6 Cr 2 O 3 0.4 Na 2 O 0.4 NiO 0.2 TiO 2 0.2 MnO 0.1 (McDonough and Sun, 1995) Pyrolite model (% weight) Depth (km) P (Kbar) V % 8 4 12 16 20 602040801000 300 500 700 Olivine perovskite  -phase spinel MW garnets opx cpx (Mg 1--x,Fe x ) 2 SiO 4 (‘’) MgSiO 3 (Mg,Al,Si)O 3 (Mg,Fe) (Si,Al)O 3 (Mg 1--x,Fe x ) O (Mg,Ca)SiO 3 CaSiO 3

5 Mantle convection

6 Temperature and Composition of LM

7 Lateral Heterogeneities

8 3D Maps of V s and V p V s V  V p ( Masters et al, 2000)

9 Anisotropy   isotropic transverse azimuthal V P V S1 = V S2 V P (  ) V S1 (  )  V S2 (  ) V P ( ,  ) V S1 ( ,  )  V S2 ( ,  )

10 Anisotropy in the Earth (Karato, 1998)

11 Mantle Anisotropy SH>SV SV>SH

12 Slip system Zinc wire F Slip systems and LPO

13 Lattice Preferred Orientation (LPO) Shape Preferred Orientation (SPO) Mantle flow geometry LPOSeismic anisotropy slip system C ij Anisotropic Structures

14 + Mineral sequence II Lower Mantle 410 km Transition Zone (520 km (?)) 670 km (Mg x,Fe (1-x) )O (Mg x,Fe (1-x) )SiO 3 (Mg x,Fe (1-x) ) 2 SiO 4 (Olivine) Upper Mantle (Spinel)

15 T M of mantle phases Core T Mantle adiabat solidus HA Mw (Mg,Fe)SiO 3 CaSiO 3 peridotite P(GPa) 0 40206080100120 2000 3000 4000 5000 T (K) (Zerr, Diegler, Boehler, 1998)

16 Method Structural optimizations First principles variable cell shape MD for structural optimizations xxxxxxxxxxxxxxxxxx(Wentzcovitch, Martins,& Price, 1993) Self-consistent calculation of forces and stresses (LDA-CA) Phonon thermodynamics Density Functional Perturbation Theory for phonons xxxxxxxxxxxxxxxxxx(Gianozzi, Baroni, and de Gironcoli, 1991) + Quasiharmonic approximation (QHA) for thermal properties (e.g., , C P, S, K T, C ij ’s). Soft & separable pseudopotentials (Troullier-Martins)

17 abcxP K th = 259 GPa K’ th =3.9 K exp = 261 GPa K’ exp =4.0 (a,b,c) th < (a,b,c) exp ~ 1% Tilt angles  th -  exp < 1deg ( Wentzcovitch, Martins, & Price, 1993) ( Ross and hazen, 1989)

18 Crystal ( Pbnm ) equilibrium structure  kl re-optimize Elastic constant tensor 

19 Yegani-Haeri, 1994 Wentzcovitch et al, 1995 Karki et al, 1997 within 5% S-waves (shear) P-wave (longitudinal) n propagation direction Elastic Waves

20 Cristoffel’s eq.: with is the propagation direction Wave velocities in perovskite (Pbnm)

21 Anisotropy P-azimuthal: S-azimuthal: S-polarization:

22 Voigt: uniform strain Reuss: uniform stress Voigt-Reuss averages: Poly-Crystalline aggregate

23 Polarization anisotropy in transversely isotropic medium High P, slip systems MgO: {100} ? (c 44 < c 11 -c 12 ) MgSiO 3 pv: {010} ? (soft c 55 ) Seismic anisotropy Isotropic in bulk LM 2% V SH > V SV in D’’ SH/SV Anisotropy (%) (Karki et al. 1997; Wentzcovitch et al1998 ) - - -

24 Theory x PREM

25 Acoustic Velocities of Potential LM Phases (Karki, Stixrude, Wentzcovitch,2001)

26 Phonon dispersions in MgO Exp: Sangster et al. 1970 (Karki, Wentzcovitch, de Gironcoli and Baroni, PRB 61, 8793, 2000) -

27 Phonon dispersion of MgSiO 3 perovskite Calc Exp Calc: Karki, Wentzcovitch, de Gironcoli, Baroni PRB 62, 14750, 2000 Exp: Raman [Durben and Wolf 1992] Infrared [Lu et al. 1994] 0 GPa 100 GPa - -

28 Quasiharmonic approximation Volume (Å 3 ) F (Ry) 4 th order finite strain equation of state staticzero-point thermal MgO Static 300K Exp (Fei 1999) V (Å 3 ) 18.5 18.8 18.7 K (GPa) 169 159 160 K´ 4.18 4.30 4.15 K´´(GPa -1 ) -0.025 -0.030 - - - -

29 Thermal expansivity of MgO and MgSiO 3 (Karki, Wentzcovitch, de Gironcoli and Baroni, Science 286, 1705, 1999)  (10 -5 K -1 )

30 MgSiO 3 -perovskite and MgO Exp.: [Ross & Hazen, 1989; Mao et al., 1991; Wang et al., 1994; Funamori et al., 1996; Chopelas, 1996; Gillet et al., 2000; Fiquet et al., 2000]

31 Elastic moduli of MgO at high P and T (Karki et al., Science 1999)

32 Elasticity of MgSiO 3 at LM Conditions

33 Adiabatic bulk modulus at LM P-T (Karki, Wentzcovitch, de Gironcoli and Baroni, GRL, 2001 )

34 LM Geotherms

35 Stratified Lower Mantle (Kellogg, Hager, van der Hilst, 1999)

36 Summary Building a consistent body of knowledge obout LM phases QHA is suitable for studying thermal properties of minerals at LM conditions A homogeneous and adiabatic LM model appears to be incompatible with PREM. LPO in aggregates of MgO and MgSiO 3 can exhibit strong anisotropy at LM conditions. We have all ingredients now to re-examine what has been said about lateral variations.

37 Acknowledgements Bijaya B. Karki (U. of MN/LSU) Shun-ichiro Karato (U. of MN/Yale) Boris Kiefer (U. of MI) Lars Stixrude (U. of MI) Stefano Baroni (SISSA) Stefano de Gironcoli (SISSA) Funding: NSF/EAR


Download ppt "First Principles Thermoelasticity of Minerals: Insights into the Earth’s LM Problems related with seismic observations T and composition in the lower mantle."

Similar presentations


Ads by Google