Presentation is loading. Please wait.

Presentation is loading. Please wait.

Cellular Respiration. CATABOLISM “ENTROPY” ENERGY FOR: ANABOLISMWORK Chemical Potential Energy.

Similar presentations


Presentation on theme: "Cellular Respiration. CATABOLISM “ENTROPY” ENERGY FOR: ANABOLISMWORK Chemical Potential Energy."— Presentation transcript:

1 Cellular Respiration

2 CATABOLISM “ENTROPY” ENERGY FOR: ANABOLISMWORK Chemical Potential Energy

3 Energy+ + Coupled Reaction

4 Energy+ + ATPADP + P + Energy Coupled Reaction

5 III. Cellular Respiration Overview:

6 MATTER and ENERGY in FOOD MONOMERS and WASTE DIGESTION AND CELLULAR RESPIRATION ADP + PATP

7 III. Cellular Respiration Overview: Focus on core process… Glucose metabolism GLYCOLYSIS

8 III. Cellular Respiration Overview: Focus on core process… Glucose metabolism GLYCOLYSIS Oxygen Present?Oxygen Absent? Aerobic Resp.Anaerobic Resp.

9 III. Cellular Respiration Overview: Focus on core process… Glucose metabolism GLYCOLYSIS Oxygen Present?Oxygen Absent? Fermentation A little ATP

10 III. Cellular Respiration Overview: Focus on core process… Glucose metabolism GLYCOLYSIS Oxygen Present?Oxygen Absent? Fermentation A little ATP Gateway CAC ETC LOTS OF ATP

11 III. Cellular Respiration Overview: 1. Glycolysis: - Occurs in presence OR absence of oxygen gas. - All cells do this! (very primitive pathway) - Occurs in the cytoplasm of all cells

12 LE 9-8 Energy investment phase Glucose 2 ATP used 2 ADP + 2 P 4 ADP + 4 P 4 ATP formed 2 NAD + + 4 e – + 4 H + Energy payoff phase + 2 H + 2 NADH 2 Pyruvate + 2 H 2 O 2 ATP 2 NADH + 2 H + Glucose 4 ATP formed – 2 ATP used 2 NAD+ + 4 e – + 4 H + Net Glycolysis ATP III. Cellular Respiration Overview: 1. Glycolysis:

13 LE 9-8 Energy investment phase Glucose 2 ATP used 2 ADP + 2 P 4 ADP + 4 P 4 ATP formed 2 NAD + + 4 e – + 4 H + Energy payoff phase + 2 H + 2 NADH 2 Pyruvate + 2 H 2 O 2 ATP 2 NADH + 2 H + Glucose 4 ATP formed – 2 ATP used 2 NAD+ + 4 e – + 4 H + Net Glycolysis ATP What's needed to keep the reaction going?

14 LE 9-8 Energy investment phase Glucose 2 ATP used 2 ADP + 2 P 4 ADP + 4 P 4 ATP formed 2 NAD + + 4 e – + 4 H + Energy payoff phase + 2 H + 2 NADH 2 Pyruvate + 2 H 2 O 2 ATP 2 NADH + 2 H + Glucose 4 ATP formed – 2 ATP used 2 NAD+ + 4 e – + 4 H + Net Glycolysis ATP What's needed to keep the reaction going? - glucose.... (moot)

15 LE 9-8 Energy investment phase Glucose 2 ATP used 2 ADP + 2 P 4 ADP + 4 P 4 ATP formed 2 NAD + + 4 e – + 4 H + Energy payoff phase + 2 H + 2 NADH 2 Pyruvate + 2 H 2 O 2 ATP 2 NADH + 2 H + Glucose 4 ATP formed – 2 ATP used 2 NAD+ + 4 e – + 4 H + Net Glycolysis ATP What's needed to keep the reaction going? - glucose.... - ATP... but previous rxn made some, so that's there

16 LE 9-8 Energy investment phase Glucose 2 ATP used 2 ADP + 2 P 4 ADP + 4 P 4 ATP formed 2 NAD + + 4 e – + 4 H + Energy payoff phase + 2 H + 2 NADH 2 Pyruvate + 2 H 2 O 2 ATP 2 NADH + 2 H + Glucose 4 ATP formed – 2 ATP used 2 NAD+ + 4 e – + 4 H + Net Glycolysis ATP What's needed to keep the reaction going? - glucose.... - ATP... but previous rxn made some, so that's there -and you need NAD to accept the electrons.... -(nicotinamide adenine dinucleotide)

17 LE 9-8 Energy investment phase Glucose 2 ATP used 2 ADP + 2 P 4 ADP + 4 P 4 ATP formed 2 NAD + + 4 e – + 4 H + Energy payoff phase + 2 H + 2 NADH 2 Pyruvate + 2 H 2 O 2 ATP 2 NADH + 2 H + Glucose 4 ATP formed – 2 ATP used 2 NAD+ + 4 e – + 4 H + Net Glycolysis ATP What's needed to keep the reaction going? - glucose.... - ATP... but previous rxn made some, so that's there - and you need NAD to accept the electrons.... AS GLYCOLYSIS PROCEEDS, THE [NAD+] DECLINES AND CAN BECOME LIMITING....

18 LE 9-8 Energy investment phase Glucose 2 ATP used 2 ADP + 2 P 4 ADP + 4 P 4 ATP formed 2 NAD + + 4 e – + 4 H + Energy payoff phase + 2 H + 2 NADH 2 Pyruvate + 2 H 2 O 2 ATP 2 NADH + 2 H + Glucose 4 ATP formed – 2 ATP used 2 NAD+ + 4 e – + 4 H + Net Glycolysis ATP What's needed to keep the reaction going? - glucose.... - ATP... but previous rxn made some, so that's there - and you need NAD to accept the electrons.... AS GLYCOLYSIS PROCEEDS, THE [NAD+] DECLINES AND CAN BECOME LIMITING.... CELLS HAVE EVOLVED TO RECYCLE NAD+..... SO GLYCOLYSIS CAN CONTINUE....

19 LE 9-18 Pyruvate Glucose CYTOSOL No O 2 present Fermentation Ethanol or lactate Acetyl CoA MITOCHONDRION O 2 present Cellular respiration Citric acid cycle NAD+ PYRUVATE

20 III. Cellular Respiration Overview: 1.Glycolysis 2.Anaerobic Respiration

21 LE 9-17a + 2 H + P 2 Alcohol fermentation CO 2 2 NADH2 NAD + 2 Acetaldehyde 2 ATP 2 ADP + 2 i 2 Pyruvate 2 Ethanol Glucose Glycolysis

22 LE 9-17b i 2 Lactate Lactic acid fermentation + 2 H + 2 NADH2 NAD + 2 ATP 2 ADP + 2 P 2 Pyruvate Glucose Glycolysis Lactate

23 III. Cellular Respiration Overview: 1.Glycolysis 2.Anaerobic Respiration 3.Aerobic Respiration

24 III. Cellular Respiration Overview: 1.Glycolysis 2.Anaerobic Respiration 3.Aerobic Respiration - Had Glycolysis: C 6 (glucose) 2C 3 (pyruvate) + ATP, NADH a - Gateway step: 2C 3 2C 2 (acetyl) + 2C (CO 2 ) + NADH b - Citric Acid Cycle: 2C 2 (acetyl) 4C (CO 2 ) + NADH, FADH, ATP c - Electron Transport Chain: convert energy in NADH, FADH to ATP

25 LE 9-10 Pyruvate NAD + Transport protein NADH + H + Coenzyme ACO 2 Acetyl Co A energy harvested as NADH Gateway step: 2C 3 2C 2 (acetyl) + 2C (CO 2 ) + NADH

26 III. Cellular Respiration Overview: 1.Glycolysis 2.Anaerobic Respiration 3.Aerobic Respiration - Had Glycolysis: C 6 (glucose) 2C 3 (pyruvate) + ATP, NADH a - Gateway step: 2C 3 2C 2 (acetyl) + 2C (CO 2 ) + NADH b - Citric Acid Cycle: 2C 2 (acetyl) 4C (CO 2 ) + NADH, FADH, ATP c - Electron Transport Chain: convert energy in NADH, FADH to ATP

27 b - Citric Acid Cycle: 2C 2 (acetyl) 4C (CO 2 ) + NADH, FADH, ATP

28 1. C 2 (acetyl) binds to C 4 (oxaloacetate), making a C 6 molecule (citrate)

29 b - Citric Acid Cycle: 2C 2 (acetyl) 4C (CO 2 ) + NADH, FADH, ATP 1.C 2 (acetyl) binds to C 4 (oxaloacetate), making a C 6 molecule (citrate) 2.One C is broken off (CO 2 ) and NAD accepts energy (NADH)

30 b - Citric Acid Cycle: 2C 2 (acetyl) 4C (CO 2 ) + NADH, FADH, ATP 1.C 2 (acetyl) binds to C 4 (oxaloacetate), making a C 6 molecule (citrate) 2.One C is broken off (CO 2 ) and NAD accepts energy (NADH) 3.The second C is broken off (CO 2 ) and NAD accepts the energy…at this point the acetyl group has been split!!

31 b - Citric Acid Cycle: 2C 2 (acetyl) 4C (CO 2 ) + NADH, FADH, ATP 1.C 2 (acetyl) binds to C 4 (oxaloacetate), making a C 6 molecule (citrate) 2.One C is broken off (CO 2 ) and NAD accepts energy (NADH) 3.The second C is broken off (CO 2 ) and NAD accepts the energy…at this point the acetyl group has been split!! 4.The C4 molecules is rearranged, regenerating the oxaloacetate; releasing energy that is stored in ATP, FADH, and NADH.

32 b - Citric Acid Cycle: 2C 2 (acetyl) 4C (CO 2 ) + NADH, FADH, ATP 1.C 2 (acetyl) binds to C 4 (oxaloacetate), making a C 6 molecule (citrate) 2.One C is broken off (CO 2 ) and NAD accepts energy (NADH) 3.The second C is broken off (CO 2 ) and NAD accepts the energy…at this point the acetyl group has been split!! 4.The C4 molecules is rearranged, regenerating the oxaloacetate; releasing energy that is stored in ATP, FADH, and NADH. 5.In summary, the C 2 acetyl is split and the energy released is trapped in ATP, FADH, and 3 NADH. (this occurs for EACH of the 2 pyruvates from the initial glucose).

33 III. Cellular Respiration Overview: 1.Glycolysis 2.Anaerobic Respiration 3.Aerobic Respiration a - Glycolysis: C 6 (glucose) 2C 3 (pyruvate) + ATP, NADH b - Gateway step: 2C 3 2C 2 (acetyl) + 2C (CO 2 ) + NADH c - Citric Acid Cycle: 2C 2 (acetyl) 4C (CO 2 ) + NADH, FADH, ATP d - Electron Transport Chain: convert energy in NADH, FADH to ATP

34 d - Electron Transport Chain: transfer energy in NADH, FADH to ATP

35 LE 9-13 ATP Glycolysis Oxidative phosphorylation: electron transport and chemiosmosis Citric acid cycle NADH 50 FADH 2 40 FMN FeS I FAD FeS II III Q FeS Cyt b 30 20 Cyt c Cyt c 1 Cyt a Cyt a 3 IV 10 0 Multiprotein complexes Free energy (G) relative to O2 (kcal/mol) H2OH2O O2O2 2 H + + 1 / 2 electron ADP + P ATP RELEASES ENERGY STORES ENERGY

36 LE 9-13 ATP Glycolysis Oxidative phosphorylation: electron transport and chemiosmosis Citric acid cycle NADH 50 FADH 2 40 FMN FeS I FAD FeS II III Q FeS Cyt b 30 20 Cyt c Cyt c 1 Cyt a Cyt a 3 IV 10 0 Multiprotein complexes Free energy (G) relative to O2 (kcal/mol) H2OH2O O2O2 2 H + + 1 / 2 electron ADP + P ATP RELEASES ENERGY STORES ENERGY HEY!!! Here’s the first time O 2 shows up!!! It is the final electron acceptor, and water is produced as a waste product!

37 LE 9-15 Protein complex of electron carriers H+H+ ATP Glycolysis Oxidative phosphorylation: electron transport and chemiosmosis Citric acid cycle H+H+ Q III I II FAD FADH 2 + H + NADH NAD + (carrying electrons from food) Inner mitochondrial membrane Inner mitochondrial membrane Mitochondrial matrix Intermembrane space H+H+ H+H+ Cyt c IV 2H + + 1 / 2 O 2 H2OH2O ADP + H+H+ ATP synthase Electron transport chain Electron transport and pumping of protons (H + ), Which create an H + gradient across the membrane P i Chemiosmosis ATP synthesis powered by the flow of H + back across the membrane Oxidative phosphorylation ETC: energy and electrons from NADH and FADH are used to pump H+ against gradient to inner membrane space…potential E.

38 LE 9-15 Protein complex of electron carriers H+H+ ATP Glycolysis Oxidative phosphorylation: electron transport and chemiosmosis Citric acid cycle H+H+ Q III I II FAD FADH 2 + H + NADH NAD + (carrying electrons from food) Inner mitochondrial membrane Inner mitochondrial membrane Mitochondrial matrix Intermembrane space H+H+ H+H+ Cyt c IV 2H + + 1 / 2 O 2 H2OH2O ADP + H+H+ ATP synthase Electron transport chain Electron transport and pumping of protons (H + ), Which create an H + gradient across the membrane P i Chemiosmosis ATP synthesis powered by the flow of H + back across the membrane Oxidative phosphorylation ETC: energy and electrons from NADH and FADH are used to pump H+ against gradient to inner membrane space…potential E. Chemiosmosis: E in flow of H+ used to make bond in ATP.

39 III. Cellular Respiration Overview: 1.Glycolysis 2.Anaerobic Respiration 3.Aerobic Respiration d - Electron Transport Chain: convert energy in NADH, FADH to ATP - OXYGEN is just an electron ACCEPTOR - WATER is produced as a metabolic waste - All carbons in glucose have been separated - Energy has been harvested and stored in bonds in ATP

40 If O 2 is NOT present, the ETC backs up and NADH and FADH can’t give up their electrons and H+ to the ETC

41 What happens then????

42 If O 2 is NOT present, the ETC backs up and NADH and FADH can’t give up their electrons and H+ to the ETC NADH is recycled through FERMENTATION to NAD so at least GLYCOLYSIS can continue!!

43 FOODCO2, water, and waste ADP + PATP ANABOLISM WORK

44 Phosphorylation of myosin causes it to toggle and bond to actin; release of phosphate causes it to return to low energy state and pull actin…contraction.

45 FOODCO2, water, and waste ADP + PATP ANABOLISM WORK


Download ppt "Cellular Respiration. CATABOLISM “ENTROPY” ENERGY FOR: ANABOLISMWORK Chemical Potential Energy."

Similar presentations


Ads by Google