Download presentation
Presentation is loading. Please wait.
Published byGrace Wood Modified over 9 years ago
1
「第5回 J-PARC における高エネルギーハドロン物理」 J-PARC に活きる南部先生のアイデア 1.Introdution 2.Stability of hadronic matter 3. Chiral symmetry in vacuum & in medium 4. No summary T. Hatsuda (Univ. of Tokyo) KEK, Jan. 8, 2009 plan ○ Y. Nambu, “Broken Symmetry”, Selected Papers of Y. Nambu, World Scientific (1995). ○ Y. Nambu, “Spontaneus symmetry breaking in particle physics: a case of cross fertilization”, Nobel Lecture (Dec. 8, 2008) pp.1-25. ○ T. Hatsuda & T. Kunihiro, “QCD phenomenology based on a chiral effective lagrangian”, Phys. Rep. Vol. 247 (1994) pp.221-367. ○ R. Hayano & T. Hatsuda, “Hadron properties in the nuclear medium”, Rev. Mod. Phys. (2009) [arXiv:0812.1702 [nucl-ex] ] references
2
String ? r << 10 -4 [fm] Nuclei r ~ 10 [fm] r ~ 1 [fm] Hadron Y. Nambu at INPC2007 1.Repulsive core in nuclear force: “Possible existence of a heavy neutral meson”, Phys. Rev. 106 (1957) 1366. 2.Dynamical breaking of chiral symmetry (with G. Jona-Lasinio): “Dynamical model of elementary particles based on an analogy with superconductivity I, II”, Phys. Rev. 122 (1961) 345, ibid. 124 (1961) 246. 3.Quantum chromodynamics: “A systematics of hadrons in subnuclear physics”, in Preludes in Theoretical Physics (North-Holland, Amsterdam, 1966). 4.String theory: “Duality and hadrodynamics”, note prepared for the Copenhagen High Energy Symposium, Aug. 1970. Subatomic structure of matter
3
Phys. Rev. 106 (1957) 1366 ω-meson NN,YN and YY interactions in lattice QCD (Aoki, Ishii, Nemura & Hatsuda, 2008) YN and YY interactions at J-PARC Structure of neutron stars after 50 years powered by QCD Repulsive core in nuclear force
4
Origin of the fermion mass These ideas are relevant in QCD and are dual relevant Nambu’s fermion/boson = quark/pion Skyrme’s fermion/boson = nucleon/pion dual bosonized Nambu = Skyrme Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122 (’61) 345 1.massless fermion ⇒ massive fermion + massless composite boson 2.massless boson ⇒ massive topological fermion + massless boson T.H.R. Skyrme, Proc. Roy. Soc. Lond. A260 (’61) 127 Two revolutionary ideas proposed in 1961
5
Y. Nambu, Nobel Lecture (Dec.8, 2008), page 22/25
6
Y. Nambu, Nobel Lecture (Dec.8, 2008), page 24/25
7
One-page summary of NJL
8
massless Dirac sea massive Dirac sea -M “Cooper” instability ・ Dynamical mass ・ Vacuum energy M g g c
9
[QCD] ・ most attractive channels : scalar & pseudo-scalar ・ running coupling : large at low energies ⇒ NJL mechanism is expected to take place SuperconductivityStrong interaction Microscopic theory (relevant symmetry) electron + phonon (global gauge symmetry) quark + gluon (global chiral symmetry) Effective theory for fermions BCS model for electrons e ↑ (x) & e ↓ (x) NJL model for quarks q L (x) & q R (x) Effective theory for soft modes Ginzburg-Landau theory for Cooper pair Δ(x) Chiral perturbation theory for pion π(x) What about QCD ?
10
Y. Nambu, Nobel Lecture (Dec.8, 2008), page 21/25
11
NJL+KMT vs. Exp. data taken from Hatsuda & Kunihiro, Phys.Rep. 247 (1994).
12
100G 100P 10P 1P 100T 10T 1T 10G 1990 1995 2000 2005 2010 2015 Keisoku Growth in Supercomputer peak performance (year) (Flops) Doubling time = 1.2 years Adapted from Wikimedia Commons
13
Gell-Mann-Oakes-Renner (GOR) formula (1968) 0 Lattice QCD calculation by JLQCD+TWQCD Collaborations, arXiv:0810.0085 [hep-lat] Di Vecchia-Veneziano formula (1980) Dim.3 chiral condensate (Nambu condensate) in the QCD vacuum
14
Dynamical quark-mass in the QCD vacuum Lattice QCD calculation in Landau gauge, 20 3 x64, a=0.125fm, MILC config. P. O. Bowman et al., Phys. Rev. D71 (2005) 054507 M (0) ~ 300-400 MeV
15
σ (600) Spectral evidence of DBCS in QCD Nambu condensate “Higgs” in QCD Nambu-Goldstone boson
16
(Theoretical) Nambu condensate in the QCD medium Lattice QCD, (2+1)-flavor Cheng et al., PRD 77 (2008) Finite Temperature Nuclear chiral perturbation Kaiser et al., PRC 77 (2008) Finite Baryon Density
17
Experimental determination of in-medium Nambu condensate from deeply bound pionic atom Experimental determination of in-medium Nambu condensate from deeply bound pionic atom Toki, Hirenzaki, Yamazaki & Hayano, NP A501 (1989) 653 Suzuki et al., PRL 92 (2004) 72302 Jido, Hatsuda & Kunihiro, PL B670 (2008) 109 Hayano & Hatsuda, Rev. Mod. Phys. (2009)
18
What about other mesons (ρ, ω, φ, σ, η, η’ …) ? ・ Many models proposed (BR scaling, HLS, Bag, ….) ・ None of them are exact except for spectral sum rules from OPE e.g. Weinberg-type sum rules Hatsuda, Koike & Lee. Nucl. Phys. B394 (1993) 221 Kapusta & Shuryak, Phys. Rev. D49 (1994) 4694 Dim.6 chiral condensate
19
ALEPH Collaboration, Phys. Rep. 421 (2005) 191 V & A spectral functions in the QCD vacuum fromτ-decay at LEP-1 ρ V (s)/s ρ A (s)/s [ρ V (s)-ρ A (s)] /s Precision measurement at KEKB ?
20
Dim.6 chiral condensate Messages 1.DBCS is best seen in the spectral difference: -, -, etc 2.Spectral difference in different channels ⇔ different chiral condensates 3.“Origin of hadron mass = Nambu condensate” : true for the pion (GOR) BUT , ρ, ω, N, … could be massive even if chiral restoration takes place “Origin of hadron mass = Nambu condensate” ? Theretically, we need further logical step Experimentally, precision measurement of SPF at J-PARC
21
Spectral sum at finite T on the lattice (π, σ, δ) π σ δ
22
Color Superfluid Chiral Superfluid ~ 1 GeV ~ 0.2 GeV Quark-Gluon Plasma “Phase” diagram of QCD Q ~ 1 GeV RHIC/LHC Neutron star J-PARC
23
J-PARC に活きる南部先生のアイデア J-PARC に活きる南部先生のアイデア nucleon quark 「物質安定性の起源と質量の起源」 「物質安定性の起源と質量の起源」 J-PARC as a QCD machine J-PARC as a QCD machine
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.