Presentation is loading. Please wait.

Presentation is loading. Please wait.

C++ Classes and Data Structures Jeffrey S. Childs

Similar presentations


Presentation on theme: "C++ Classes and Data Structures Jeffrey S. Childs"— Presentation transcript:

1 C++ Classes and Data Structures Jeffrey S. Childs
Chapter 10 The Linked List as a Data Structure Jeffrey S. Childs Clarion University of PA © 2008, Prentice Hall

2 The List ADT A list is a list of elements
The list of elements consist of the data acted upon by list operations A current position (or active position) in the list is also acted upon by list operations

3 List ADT Operations insert, to insert a new item into the list; there is no current position after an insertion an iterator, for retrieving (by copy instead of removal) each item from the list, one at a time; at any particular moment when an item is retrieved, that item becomes the current position in the list find, to determine whether or not a certain item exists in a list; if the item exists, it becomes the current position retrieve, to retrieve (by copy instead of removal) a certain item; that item becomes the current position more…

4 List ADT Operations (cont.)
replace, to replace the item at the current position with another item; the current position remains unchanged remove, to remove an item from a list; there is no current position after a removal an operation to determine whether or not the list is empty; the current position is unchanged an operation to empty out the list; the current position is lost

5 Retrieving Elements When the client needs to retrieve an element in the list, the main practical reason is because it contains information that the client doesn’t have Yet, the clients must know something about it; otherwise, they would not be able to tell the List object to look for it The clients know about the key...

6 Keys A key is a value that uniquely identifies an object
If objects are people, a good key would be the SSN books – ISBN key parts – part number key The elements in a list ADT are usually objects – the key is just a single data member of the object

7 An Example A customer of an insurance company has a problem with the amount paid by the insurance company for an operation The customer calls the insurance company The insurance company asks the customer for the claim number (the key) The customer provides the claim number

8 An Example (cont.) The insurance company representative types the claim number (key) into the computer The claim number is typed into a program which is using one or more data structures The retrieve function of a data structure is called, passing in the claim number (key)

9 An Example (cont.) The retrieve function searches the data structure for the object that has the key The retrieve function finds the object and returns the object All the data in the object is now provided to the main program The main program shows all the data on the screen

10 An Example (cont.) The insurance company representative looks at the data The insurance company representative can now see what the customer is complaining about

11 List Implementation In C++, lists can be implemented with arrays or linked lists Recall two advantages of linked lists conserve memory for large objects (such as objects with keys) can easily remove an element from the middle So, we’ll focus on using the linked list Instead of saying “linked-list implementation of a list”, we’ll just say “linked list”

12 Retrieve Function Implementation
How should we pass a key into the retrieve function and return the object? Approach 1: Pass in a key as a parameter and pass in an object as a reference parameter (to return the object result) Approach 2: Pass in an object by reference which has its key set to the key to search for; when the object is found in the linked list, it is assigned to the object passed in by reference

13 Advantages of Approach 2
The client must declare an object, which will hold the data retrieved from the linked list approach 2 relieves the client of also having to declare a key; a key is already in the object If approach 1 is used, two DataType’s are needed (say, DataType1 and DataType2) for the object type and the key type approach 2 will also be used for the find and remove functions

14 The Retrieval Process An object is created in the main program
The representative asks the customer for the key The representative types in the key The object’s data member is set to the key value; no other data members in the object are set The object (let’s say obj1) is passed into the retrieve function by reference

15 The Retrieval Process (cont.)
The struct for obj1 has an overloaded operator, used by the retrieve function for finding the object with the key: Example: if ( obj1 == ptr->info ) // found The other information is placed in obj1 obj1 = ptr->info; The retrieve function returns true (indicating a find) and obj1 is returned by reference parameter

16 The Iterator first – returns the first element in the linked list
getNext – returns the next element in the linked list, after the first function call or previous getNext function call Implemented by maintaining a current pointer in the private section The current pointer is advanced every time getNext is called Returns false when the client tries to get an element beyond the end of the list (otherwise returns true)

17 Find and Replace Functions
find – returns true only if an element with the key was found – the element itself is not returned replace – replaces the element at the current position with the element passed in find and replace functions will often be used together

18 LinkedList Implementation
A general linked list is more involved than the linked list queue or the linked list stack The client must be able to access, change, or remove any element in the linked list at any time It should be implemented to handle key-oriented types of objects, but also be general enough to handle other objects without keys, like strings

19 LinkedList Implementation (cont.)
We won’t use a header node Arrays of linked lists are used in other data structures, such as HashTables and Graphs – many linked lists could be empty A header node would simplify code, but an empty linked list with a header node would use more memory space a dynamic header node wouldn’t help – the LinkedList constructor would create the header node

20 LinkedList.h 1 template <class DataType> 2 struct Node {
3 DataType info; 4 Node<DataType> *next; 5 }; 6 7 template <class DataType> 8 class LinkedList 9 { 10 public: 11 LinkedList( ); 12 LinkedList( const LinkedList<DataType> & aplist ); LinkedList.h continued…

21 LinkedList.h (cont.) 13 ~LinkedList( );
14 LinkedList<DataType> & operator =( 15 const LinkedList<DataType> & rlist ); 16 void insert( const DataType & element ); 17 bool first( DataType & listEl ); 18 inline bool getNext( DataType & listEl ); 19 bool find ( const DataType & element ); 20 bool retrieve( DataType & element ); 21 bool replace( const DataType & newElement ); 22 bool remove( DataType & element ); 23 bool isEmpty( ) const; 24 void makeEmpty( ); private section next…

22 LinkedList.h (cont.) 25 private: 26 Node<DataType> *start;
27 Node<DataType> *current; 28 inline void deepCopy( 29 const LinkedList<DataType> & original ); 30 }; 31 32 #include "LinkedList.cpp"

23 Constructor / Copy Constructor
1 template <class DataType> 2 LinkedList<DataType>::LinkedList( ) 3 { 4 start = current = NULL; 5 } 6 7 template <class DataType> 8 LinkedList<DataType>::LinkedList( 9 const LinkedList<DataType> & aplist ) 10 { 11 deepCopy( aplist ); 12 }

24 Destructor 13 template <class DataType>
14 LinkedList<DataType>::~LinkedList( ) 15 { 16 makeEmpty( ); 17 }

25 Overloaded Assignment Operator
18 template <class DataType> 19 LinkedList<DataType> & LinkedList<DataType>:: 20 operator =( const LinkedList<DataType> & rlist ) 21 { 22 if ( this == &rlist ) 23 return *this; 24 makeEmpty( ); 25 deepCopy( rlist ); 26 return *this; 27 }

26 insert 28 template <class DataType>
29 void LinkedList<DataType>::insert( const DataType & element ) 31 { 32 current = NULL; 33 Node<DataType> *newNode = new Node<DataType>; 34 newNode->info = element; 35 newNode->next = start; 36 start = newNode; 37 } Inserting at the beginning of the linked list makes this a ( 1 ) function.

27 first 48 template <class DataType>
49 bool LinkedList<DataType>::first( DataType & listEl ) 50 { 51 if ( start == NULL ) 52 return false; 53 54 current = start; 55 listEl = start->info; 56 return true; 57 }

28 getNext getNext continued… 58 template <class DataType>
59 inline bool LinkedList<DataType>::getNext( DataType & listEl ) 61 { 62 if ( current == NULL ) 63 return false; 64 if ( current->next == NULL ) { 65 current = NULL; 66 return false; 67 } getNext continued…

29 getNext (cont.) 68 current = current->next;
69 listEl = current->info; 70 return true; 71 }

30 find 72 template <class DataType>
73 bool LinkedList<DataType>::find( const DataType & element ) 75 { 76 DataType item; 77 if ( !first( item ) ) 78 return false; 79 do if ( item == element ) 80 return true; 81 while ( getNext( item ) ); 82 83 return false; 84 } Overloaded operator if DataType is a struct object

31 find (cont.) 72 template <class DataType>
73 bool LinkedList<DataType>::find( const DataType & element ) 75 { 76 DataType item; 77 if ( !first( item ) ) 78 return false; 79 do if ( item == element ) 80 return true; 81 while ( getNext( item ) ); 82 83 return false; 84 } Note that this is a ( n ) function.

32 retrieve 85 template <class DataType>
86 bool LinkedList<DataType>::retrieve( DataType & element ) 88 { 89 if ( !find( element ) ) 90 return false; 91 element = current->info; 92 return true; 93 }

33 replace 94 template <class DataType>
95 bool LinkedList<DataType>::replace( const DataType & newElement ) 97 { 98 if ( current == NULL ) 99 return false; 100 current->info = newElement; 101 return true; 102 }

34 remove 103 template <class DataType>
104 bool LinkedList<DataType>::remove( DataType & element ) 106 { 107 current = NULL; 108 if ( start == NULL ) 109 return false; remove continued…

35 remove (cont.) 110 Node<DataType> *ptr = start;
111 if ( ptr->info == element ) { 112 element = ptr->info; 113 start = start->next; 114 delete ptr; 115 return true; 116 } We need to keep ptr one node in front of the node to remove, so the first node is a special case. remove continued…

36 remove (cont.) 117 while ( ptr->next != NULL ) {
118 if ( ptr->next->info == element ) { 119 Node<DataType> *tempPtr = ptr->next; 120 element = tempPtr->info; 121 ptr->next = tempPtr->next; 122 delete tempPtr; 123 return true; 124 } 125 ptr = ptr->next; 126 } 127 128 return false; 129 }

37 isEmpty 130 template <class DataType>
131 bool LinkedList<DataType>::isEmpty( ) const 132 133 { 134 return start == NULL; 135 }

38 makeEmpty 136 template <class DataType>
137 void LinkedList<DataType>::makeEmpty( ) 138 { 139 while ( start != NULL ) { 140 current = start; 141 start = start->next; 142 delete current; 143 } 144 145 current = NULL; 146 }

39 deepCopy 147 template <class DataType>
148 inline void LinkedList<DataType>::deepCopy( const LinkedList<DataType> & original ) 150 { 151 start = current = NULL; 152 if ( original.start == NULL ) 153 return; 154 Node<DataType> *copyptr = start = new Node<DataType>; 156 Node<DataType> *originalptr = original.start; 157 copyptr->info = originalptr->info; deepCopy continued…

40 deepCopy (cont.) 158 if ( originalptr == original.current )
159 current = copyptr; 160 while ( originalptr->next != NULL ) { 161 originalptr = originalptr->next; 162 copyptr->next = new Node<DataType>; 163 copyptr = copyptr->next; 164 copyptr->info = originalptr->info; 165 if ( originalptr == original.current ) 166 current = copyptr; 167 } 168 copyptr->next = NULL; 169 } Special code to set current pointer in copy correctly.

41 Sorted Linked List A sorted linked list is one in which the elements are placed in order (usually by key value) start 3 4 5 7 9

42 Sorted Linked List (cont.)
Insertion is no longer ( 1 ), but is ( n ) on average Find and retrieve functions are faster, on average, if the element is not in the list Once you reach a point in the list where the element you are looking for is greater, then you know it is not in the list Still ( n ) on average

43 Circular Linked List current

44 Doubly-Linked List … start
Given a pointer to a node in a doubly-linked list, we can remove the node in ( 1 ) time. This isn’t possible in a singly-linked list, since we must have a pointer to the node in front of the one we want to remove.

45 Doubly-Linked List … start template <class DataType>
struct DLNode { DataType info; DLNode<DataType> *next; DLNode<DataType> *back; }; Each node is made from a struct that looks something like this.

46 Doubly-Linked List start

47 Doubly-Linked List start ptr

48 Doubly-Linked List … start ptr ptr->back->next = ptr->next;
ptr->next->back = ptr->back; delete ptr;

49 Doubly-Linked List … start ptr ptr->back->next = ptr->next;
ptr->next->back = ptr->back; delete ptr;

50 Doubly-Linked List … start ptr ptr->back->next = ptr->next;
ptr->next->back = ptr->back; delete ptr;

51 Doubly-Linked List … start ptr ptr->back->next = ptr->next;
ptr->next->back = ptr->back; delete ptr;

52 Doubly-Linked List … start ptr ptr->back->next = ptr->next;
ptr->next->back = ptr->back; delete ptr;

53 Doubly-Linked List … start ptr ptr->back->next = ptr->next;
ptr->next->back = ptr->back; delete ptr;

54 Doubly-Linked List … start ptr ptr->back->next = ptr->next;
ptr->next->back = ptr->back; delete ptr;


Download ppt "C++ Classes and Data Structures Jeffrey S. Childs"

Similar presentations


Ads by Google