Download presentation
Presentation is loading. Please wait.
Published byDeborah Stevenson Modified over 9 years ago
1
Dr. Z. R. Ghassabi z.r.ghassabi@gmail.com Tehran shomal University Spring 2015 z.r.ghassabi@gmail.com Digital Image Processing Session 3 1
2
Outline Introduction Digital Image Fundamentals Intensity Transformations and Spatial Filtering Filtering in the Frequency Domain Image Restoration and Reconstruction Color Image Processing Wavelets and Multi resolution Processing Image Compression Morphological Operation Object representation Object recognition 2
3
Outline of Chapter 3 Basic Intensity Transformation Functions Negative, Log, Gamma Piecewise-Linear Transformation Functions Contrast stretching, contrast slicing, bit-plane slicing Histogram Processing Histogram Stretching, Histogram Shrink, Histogram Sliding, Histogram equalization, adaptive local histogram, histogram matching, local histogram equalization, histogram statistics Fundamentals of Spatial Filtering Smoothing Spatial Filters, Sharpening Spatial Filters, Combining Spatial Enhancement Tools
4
Image Enhancement Methods – Spatial Domain: Linear Nonlinear – Frequency Domain: Linear Nonlinear
5
Image Enhancement Spatial Domain
6
Image Enhancement Example: Image Subtraction for enhancing Differences
7
Image Enhancement Frequency Domain
8
Image Transforms
9
Image Enhancement in spatial Domain (Transformation) For 1 1 neighborhood: – Contrast Enhancement/Stretching/Point process For w w neighborhood: – Filtering/Mask/Kernel/Window/Template Processing
10
Image Enhancement in spatial Domain Input gray level, r Output gray level, s Negative Log nth root Identity nth power Inverse Log Some Basic Intensity Transformation Functions
11
Image Negatives Image Negatives: L x 0 L y y=L-x
12
Image Negatives
13
Log Transformation
14
c=100 L x 0 y
15
Log Transformation Range Compression
16
Power-Law(Gamma) Transformations
17
Gamma Correction:
18
Power-Law(Gamma) Transformations (Effect of decreasing gamma)
19
Power-Law(Gamma) Transformations (Effect of increasing gamma)
20
Power-Law(Gamma) Transformations Medical Example
21
Piecewise-Linear Transformation Functions Contrast Stretching Contrast slicing Bite-Plane slicing
22
Contrast Stretching L x 0 ab yaya ybyb y
23
Contrast stretching Original C. S. THR.
24
Contrast Stretching
25
L x 0ab y Clipping:
26
MATLAB Tutorial imadjust(I, [low-in, high-in],[low-out, high-out]) low-in high-in low-out high-out Output Image Input Image
27
مناسب ترین مقدار چیست؟ MATLAB Tutorial imadjust(I, [low-in, high-in],[low-out, high-out], gamma) imadjust(I, [0.1, 0.7],[0, 1], gamma) low-in high-in low-out high-out Output Image Input Image
28
MATLAB Tutorial Use Min and Max gray-levels – Low-in: Double(min(I(:))/255) – max-in: Double(max(I(:))/255) Use stretchlim(I) imadjust(I,stretchlim(I),[low-out, high-out], gamma)
29
MATLAB Tutorial low-in high-in low-out high-out Output Image Input Image
30
Gray-level Slicing
31
Gray-level Slicing
34
Gray-level Slicing
35
Bit-plane Slicing Highlighting the contribution made to total image appearance by specific bits Suppose each pixel is represented by 8 bits Higher-order bits contain the majority of the visually significant data Useful for analyzing the relative importance played by each bit of the image
36
Bit-plane Slicing
37
The (binary) image for bit-plane 7 can be obtained by processing the input image with a thresholding gray-level transformation. Map all levels between 0 and 127 to 0 Map all levels between 129 and 255 to 255
38
Bit-plane Slicing Fractal Image
39
Bit-plane 7Bit-plane 6 Bit-plane 5Bit-plane 4Bit-plane 3 Bit-plane 2Bit-plane 1Bit-plane 0
40
Bit-plane Slicing
41
Histogram Processing Enhancement based on statistical Properties: Local, Global Histogram Definition h(r k )=n k Where r k is the kth gray level and n k is the number of pixels in the image having gray level r k Normalized histogram: P(r k )=n k /n Histogram of an image represents the relative frequency of occurrence of various gray levels in the image
42
Histogram Example
43
MATLAB Tutorial Hist(double(I(:)),50) imhist(I)
44
Histogram Examples Histogram Visual Meaning: – Dark – Bright – Low Contrast – High Contrast
45
Histogram Modification Histogram Stretching Histogram Shrink Histogram Sliding
46
Histogram Stretching
49
Histogram Shrinking
50
Histogram Shrinking
51
Histogram Sliding
52
Histogram Equalization PDF تناظر بین x و U اکیدا صعودی بودن CDF هست. برای اکیدا صعودی بودن تابع CDF باید مشتق آن یعنی PDF همیشه بزرگتر از صفر باشد. F: X-------->[0,1] U=F(X) چون تابع یک به یک هست پس معکوس هم دارد. X=F -1 (U) x 1 0 CDF U متغیر تصادفی
53
Histogram Equalization
54
توزیع آماری u مستقل از مقدار x و همیشه یکنواخت بین 0 و یک هست. u~U(0,1) X های ورودی را بین 0 و یک توزیع میکند. هیستوگرام U
55
Histogram Equalization r 1 0 CDF S=T(r) PDF PrPr سطح زیر منحنی S~U(0,1) هیستوگرام U هیستوگرام تصویر ورودی روشنایی تصویر ورودی r
56
Histogram Equalization r 1 0 CDF S=T(r) PDF PrPr روشنایی تصویر ورودی r هیستوگرام تصویر ورودی
57
Histogram Equalization
58
Histogram Equalization
59
MATLAB Tutorial histeq(I)
60
Histogram Equalization
61
Adaptive Contrast Enhancement (ACE)
64
MATLAB Tutorial I2=adapthisteq( I,'clipLimit',0.015,'Distribution','rayleigh'); clear all; close all; clc; [f1, pp1] = uigetfile('*.jpg', 'Pick a image'); I1Name = sprintf('%s%s',pp1,f1); I=imread(I1Name); if ndims(I)==3 I1=rgb2gray(I); end I2=adapthisteq( I1,'clipLimit',0.015,'Distribution','rayleigh'); figure(); subplot(1,2,1); imshow(I1); subplot(1,2,2); imshow(I2);
66
Adaptive Histogram Equalization
67
Histogram Matching prpr pzpz Histeq(I,hgram)
68
Histogram matching: Obtain the histogram of the given image, s=T(r) Precompute a mapped level S k for each level r k Obtain the transformation function G from the given p z (z) Precompute Z k for each value of r k Map r k to its corresponding level S k ; then map level S k into the final level Z k Histogram Matching r S 0 CDF S=T(r) PDF PrPr r هیستوگرام تصویر ورودی 0 pzpz هیستوگرام دلخواه
69
Histogram Matching (Specification) برای یک تصویر 64*64 هیستوگرام طوری تبدیل شود که دارای مقادیر مشخص شده در شکل b باشد.
70
Histogram Matching (Specification) S 0 =1, G(z 3 )=1, s 0 --- >z 3 هر پیکسلی که مقدارش در تصویر تعدیل هیستوگرام یک هست به مقداری برابر سه در هیستوگرام مشخص شده نگاشت می شود.
71
Image is dominated by large, dark areas, resulting in a histogram characterized by a large concentration of pixels in pixels in the dark end of the gray scale Histogram Matching (Specification)
72
Notice that the output histogram’s low end has shifted right toward the lighter region of the gray scale as desired. Histogram Matching (Specification)
73
Desired Initial CDF Modified CDF Histogram Matching (Specification)
74
Local Histogram Processing a)Original image b)global histogram equalization c)local histogram equalization using 7x7 neighborhood.
75
Histogram using a local 3*3 neighborhood Local Histogram Processing
76
Use of histogram statistics for image enhancement: r denotes a discrete random variable P(r i ) denotes the normalized histogram component corresponding to the i th value of r Mean: The n th moment: The second moment: Using Histogram Statistics
77
Global enhancement: The global mean and variance are measured over an entire image Local enhancement: The local mean and variance are used as the basis for making changes Using Histogram Statistics r s,t is the gray level at coordinates (s,t) in the neighborhood P(r s,t ) is the neighborhood normalized histogram component mean: local variance:
78
Mapping: E,K 0,K 1,K 2 are specified parameters M G is the global mean D G is the global standard deviation Using Histogram Statistics
79
A SEM sample images: Using Histogram Statistics
80
Local Mean Local Var E or one Using Histogram Statistics
81
Enhanced Images: Using Histogram Statistics
82
Fundamental of Spatial Filtering
83
The Mechanics of Spatial Filtering: -a +a -b+b Image size: M×N, x= 0,1,2,…,M-1 and y= 0,1,2,…,N-1 Mask size: m×n, a=(m-1)/2 and b=(n-1)/2 Correlation
84
Fundamental of Spatial Filtering
85
Spatial Correlation and Convolution
87
Vector Representation of Linear Filtering
88
Smoothing Linear Filters : Noise reduction Smoothing of false contours Reduction of irrelevant detail Smoothing Spatial Filters
89
Image smoothing with masks of various sizes.
91
MATLAB Tutorial W=repmat(1/9,3,3); W=1/9*ones(3,3); a=2; W=ones(2*a+1) W=W/sum(W(:)); Img1=imread(‘image1.jpg’); Img2=imfilter(Img1,W);
92
MATLAB Tutorial Img2=imfilter(Img1,W,’symmetric’);
93
Order-statistic filters: Max Min Median filter: Replace the value of a pixel by the median of the gray levels in the neighborhood of that pixel Noise-reduction Order-Static (Nonlinear) Filters
94
Median Filter
95
The first-order derivative: The second-order derivative Sharpening Spatial Filters Zero in flat region Non-zero at start of step/ramp region Non-zero along ramp Zero in flat region Non-zero at start/end of step/ramp region Zero along ramp
96
Sharpening Spatial Filters
98
Use of second derivatives for enhancement-The Laplacian: Development of the method Sharpening Spatial Filters
99
Practically use:
100
Sharpening Spatial Filters
102
Two L. Mask SEM image a. Mask Result b. Mask Result (Sharper)
103
Unsharp masking Subtract a blurred version of an image from the image itself f(x,y) : The image, f ̄ (x,y): The blurred image High boost Filtering: Unsharp Masking and Highboost Filtering
106
Original Laplacian (A=0) Laplacian (A=1) Laplacian (A=1.7) Unsharp Masking and Highboost Filtering
107
Using first-order derivatives for (nonlinear) image sharpening, The gradient: The gradient: The magnitude is rotation invariant (isotropic) Using First-Order Derivative for (Nonlinear) Image Sharpening - The Gradient
108
Roberts Cross Gradient Sobel (2 1 for prewitt) and
109
Using the Gradient for Image Sharpening Sobel Gradient
110
Bone Scan Laplacian Original +Laplacian Soble of Original Combining Spatial Enhancement Tools
111
Smoothed Sobel (Orig. + L.)*S.Sobel Orig.+ (Orig. + L.)*S.Sobel Apply Power-Law Combining Spatial Enhancement Tools
112
Img0=im2double(img0); w=fspecial(type, parameters) W=fspecial(‘disk’,3); W=fspecial(‘gaussian’,101,10); W=fspecial(‘laplacian’,0); W=fspecial(‘log’,10,1); Img1=imfilter(Img0,W); figure();imshow(normalize(Img1)); C=-1; figure();imshow(img0+C*Img1); Wp=fspecial(‘prewitt’); Ws=fspecial(‘prewitt’); Img1=imfilter(Img0,Wp); Img2=imfilter(Img0,Ws); W=0.3*Wp+0.7*Ws; Img1=imfilter(Img0,W); Img1=imfilter(Img0,Wp); Img2=imfilter(Img0,Wp’); Imshow(sqrt(Img1.^2+Img2.^2) MATLAB Tutorial
113
function XN=Normalize(X) Xmin=min(X(:)); Xmax=max(X(:)); XN=((X-Xmin)/(Xmax-Xmin)).^beta; end MATLAB Tutorial
114
Img0=im2double(imread(‘….’)); M=3;N=5; Domain=ones(M,N); Img1=ordfilt2(img0,M*N, Domain); Img2=ordfilt2(img0,0, Domain); Img3=ordfilt2(img0,(M+N+1)/2, Domain); figure(); subplot(1,3,1); imshow(Img1); subplot(1,3,2); imshow(Img2); subplot(1,3,3); imshow(Img3); MATLAB Tutorial
115
Img0=im2double(imread(‘….’)); M=3;N=5; Domain=ones(M,N); Img1=imnoise(img0,’salt & pepper’); Img2=ordfilt2(img1,(M+N+1)/2, Domain); Img3=medfilt2(img1,[M N]); figure(); subplot(2,2,1); imshow(Img0); subplot(2,2,2); imshow(Img1); subplot(2,2,3); imshow(Img2); subplot(2,2,3); imshow(Img3); MATLAB Tutorial
116
MATLAB Command: – Image Statistics: means2, std2, corr2, imhist, regionprops – Image Intensity Adjustment: imadjust, histeq, adapthisteq, imnoise – Linear Filter: imfilter, fspecial, conv2, corr2, – Nonlinear filter: medfilt2, ordfilt2,
117
MATLAB Tutorial
118
End of Session 3
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.