Download presentation
Presentation is loading. Please wait.
Published byCaroline Holland Modified over 9 years ago
1
Splash Screen
2
Lesson Menu Five-Minute Check (over Chapter 4) Then/Now New Vocabulary Theorems: Perpendicular Bisectors Example 1: Use the Perpendicular Bisector Theorems Theorem 5.3: Circumcenter Theorem Proof: Circumcenter Theorem Example 2: Real-World Example: Use the Circumcenter Theorem Theorems: Angle Bisectors Example 3: Use the Angle Bisector Theorems Theorem 5.6: Incenter Theorem Example 4: Use the Incenter Theorem
3
Over Chapter 4 5-Minute Check 1 A.scalene B.isosceles C.equilateral Classify the triangle. A.A B.B C.C
4
Over Chapter 4 A.A B.B C.C D.D 5-Minute Check 2 A.3.75 B.6 C.12 D.16.5 Find x if m A = 10x + 15, m B = 8x – 18, and m C = 12x + 3.
5
Over Chapter 4 5-Minute Check 3 A. R V, S W, T U B. R W, S U, T V C. R U, S V, T W D. R U, S W, T V Name the corresponding congruent sides if ΔRST ΔUVW. A.A B.B C.C
6
Over Chapter 4 5-Minute Check 4 Name the corresponding congruent sides if ΔLMN ΔOPQ. A.A B.B C.C A. B. C. D.,
7
Over Chapter 4 A.A B.B C.C D.D 5-Minute Check 5 A.22 B.10.75 C.7 D.4.5 Find y if ΔDEF is an equilateral triangle and m F = 8y + 4.
8
Then/Now You used segment and angle bisectors. (Lesson 1–3 and 1–4) Identify and use perpendicular bisectors in triangles. Identify and use angle bisectors in triangles.
9
Vocabulary perpendicular bisector
10
Concept
11
Example 1 Use the Perpendicular Bisector Theorems A. Find the measure of BC. Answer: 8.5 BC= ACPerpendicular Bisector Theorem BC= 8.5Substitution
12
Example 1 Use the Perpendicular Bisector Theorems B. Find the measure of XY. Answer: 6
13
Example 1 Use the Perpendicular Bisector Theorems C. Find the measure of PQ. PQ= RQPerpendicular Bisector Theorem 3x + 1= 5x – 3Substitution 1= 2x – 3Subtract 3x from each side. 4= 2xAdd 3 to each side. 2= xDivide each side by 2. So, PQ = 3(2) + 1 = 7. Answer: 7
14
A.A B.B C.C D.D Example 1 A.4.6 B.9.2 C.18.4 D.36.8 A. Find the measure of NO.
15
A.A B.B C.C D.D Example 1 A.2 B.4 C.8 D.16 B. Find the measure of TU.
16
A.A B.B C.C D.D Example 1 A.8 B.12 C.16 D.20 C. Find the measure of EH.
17
Concept
18
Example 3 Use the Angle Bisector Theorems A. Find DB. Answer: DB = 5 DB= DCAngle Bisector Theorem DB= 5Substitution
19
Example 3 Use the Angle Bisector Theorems B. Find WYZ.
20
Example 3 Use the Angle Bisector Theorems Answer: m WYZ = 28 WYZ XYZDefinition of angle bisector m WYZ= m XYZDefinition of congruent angles m WYZ= 28Substitution
21
Example 3 Use the Angle Bisector Theorems C. Find QS. Answer: So, QS = 4(3) – 1 or 11. QS= SRAngle Bisector Theorem 4x – 1= 3x + 2Substitution x – 1= 2Subtract 3x from each side. x= 3Add 1 to each side.
22
A.A B.B C.C D.D Example 3 A.22 B.5.5 C.11 D.2.25 A. Find the measure of SR.
23
A.A B.B C.C D.D Example 3 A.28 B.30 C.15 D.30 B. Find the measure of HFI.
24
A.A B.B C.C D.D Example 3 A.7 B.14 C.19 D.25 C. Find the measure of UV.
25
Splash Screen
26
Vocabulary median altitude
27
Altitude:Altitude: (of a triangle) is a segment from a vertex to the line containing the opposite side and perpendicular to the line containing that side. Median:Median: (of a triangle) is a segment with endpoints being a vertex of a triangle and the midpoint of the opposite side.
28
Concept
29
End of the Lesson
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.