Download presentation
1
Geometry Chapter 5 Review
2
The point of concurrency for perpendicular bisectors is called the __________________.
Incenter Orthocenter Circumcenter Centroid 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
3
The point of concurrency for angle bisectors is called the __________________.
Incenter Orthocenter Circumcenter Centroid 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
4
Three or more lines that intersect at the same point are _______
Perpendicular Current Parallel Skew Concurrent 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
5
The point of concurrency for altitudes is called the __________________.
Incenter Orthocenter Circumcenter Centroid 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
6
The point of concurrency for medians is called the __________________.
Incenter Orthocenter Circumcenter Centroid 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
7
The __________________ is the same distance from each vertex.
Incenter Orthocenter Circumcenter Centroid 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
8
The __________________ is the same distance from each side.
Incenter Orthocenter Circumcenter Centroid 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
9
The __________________ is the balance point or center of mass of a triangle.
Incenter Orthocenter Circumcenter Centroid 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
10
Perpendicular Bisectors
The center of a circle inscribed in the triangle is produced by concurrent ____________. Altitudes Angle Bisectors Medians Perpendicular Bisectors 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
11
Perpendicular Bisectors
The center of a circle circumscribed about the triangle is produced by concurrent ____________. Altitudes Angle Bisectors Medians Perpendicular Bisectors 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
12
True or False True False 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
19 20 21 22 23 24 25 26 27 28 29 30
13
True or False True False 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
19 20 21 22 23 24 25 26 27 28 29 30
14
Solve for x 3 13 21 43.5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
15
Team Scores 11.15 Girls 10 Boys
16
Solve for BD 3 4 5 8 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
17
Solve for CE 3 4 5 8 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
18
a Centroid Circumcenter Incenter Orthocenter 1 2 3 4 5 6 7 8 9 10 11
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
19
Solve for GE 4 6 9 12 18 24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
20
Solve for GC 2.5 5 7.5 10 12.5 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
21
Solve for GB 6 9 12 18 24 36 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
22
An altitude is always perpendicular to the opposite side of its vertex.
True False 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
23
The orthocenter is the center of a triangle.
True False 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
24
Vertices Midpoints Angles Sides Orthocenters
A midsegment of a triangle connects two _______. (Choose the most precise answer.) Vertices Midpoints Angles Sides Orthocenters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
25
A midsegment is _____ to the third side of a triangle.
Concurrent Parallel Perpendicular Skew Current 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
26
A midsegment is ____ the length of the third side.
Double Two-thirds of Equidistant to Half of One-fourth of Equal to 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
27
Team Scores 17.55 Girls 16.53 Boys
28
Solve for DC 5 8 10 16 20 32 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
29
Solve for x given BD = 5x + 3 and AE = 6x + 9
– 6 1.5 3 0.75 None of the above 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
30
Order the sides from least to greatest
AB, BC, AC BC, AC, AB AC, AB, BC BC, AB, AC AB, AC, BC AC, BC, AB 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
31
Order the angles from least to greatest
Angles A, B, C Angles B, C, A Angles C, A, B Angles A, C, B Angles B, A, C Angles C, B, A 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
32
Will sides of length 8, 11, and 20 make a triangle?
Yes No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
33
Will sides of length 7, 10, and 16 form a triangle?
Yes No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
34
A triangle has two sides of length 6 and 11
A triangle has two sides of length 6 and 11. The length of the third side of the triangle must be more than …… 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
35
A triangle has two sides of length 5 and 8
A triangle has two sides of length 5 and 8. The length of the third side of the triangle must be less than …… 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
36
Order the sides from least to greatest
AB, AD, AC, BC, CD AB, BC, AC, CD, AD AD, CD, AC, BC, AB AD, AC, CD, AB, BC CD, AD, AC, BC, AB None of the above 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
37
Team Scores 20.41 Girls 19.78 Boys
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.