Download presentation
Presentation is loading. Please wait.
Published byJohn Freeman Modified over 9 years ago
1
Warm-Up 4/8 Q&A on assignment. Give equation for each graph.
y = 2sin x y = sin x y = sin x Q&A on assignment.
2
1, 3, 7, 5 1, 3, 7, 5 2, 4, 6 2, 4, 7, 6
4
Rigor: You will learn how to graph transformations of the cosine and tangent functions. Relevance: You will be able to use sinusoidal functions to solve real world problems. MA.912. A.2.11
5
Trig 6 Graphing Cosine and Tangent Functions
6
f(x) = a cos(bx + c)+ d
7
Even function: cos (âx) = cos x
x-intercepts: y- intercept: Continuity: Extrema: End Behavior: đ 2 +nī°, n Īĩ Z Domain: Range: Amplitude (a): period (b): Phase shift (c): Midline (d): Oscillation: Symmetry: (0, 1) continuous on 1 Maximum of 1 at x =2nī°, n Īĩ Z Minimum of â1 at x = ī°+2nī°, n Īĩ Z y = 0 between â 1 and 1 Even function: cos (âx) = cos x
8
f(x) = a cos(bx + c) + d â a: reflects in the x-axis
PERIOD: đđ
đ Frequency: đ đđ
PHASE SHIFT: âđ đ VERTICAL SHIFT: d MIDLINE: đ=đ
AMPLITUDE: đ â a: reflects in the x-axis đ< đ <đ: Vertically Compressed đ >đ: Vertically Expanded đ< đ <đ: Horizontally Expanded đ >đ: Horizontally Compressed
9
Example 1: Describe how the graph of f(x) = cos x and g(x) = â 3cos x are related. Then find the amplitude of g(x), and sketch two periods of both functions on the same coordinate axes. The graph g(x) is the graph of f(x) expanded vertically and the reflected in the x-axis. The Amplitude of g(x) is â3 đđ 3. x f(x) g(x) 1 â3 đ 2 ī° â 1 3 3đ 2 2ī° 5đ 2 3ī° 7đ 2 4ī°
10
Example 2: Describe how the graph of f(x) = cos x and g(x) = cos đĨ 3 are related. Then find the period of g(x), and sketch at least one period of both functions on the same coordinate axes. The graph g(x) is the graph of f(x) expanded horizontally. The Period of g(x) is 2đ đđ 6ī°. x f(x) 1 đ 2 ī° â 1 3đ 2 2ī° 5đ 2 3ī° 7đ 2 4ī° x g(x) 1 3đ 2 3ī° â 1 9đ 2 6ī°
11
Fill in Chart. x tan x âī° â 3đ 4 â đ 2 â đ 4 đ 4 đ 2 3đ 4 ī° 1 und â 1
(0, 1) Fill in Chart. x tan x âī° â 3đ 4 â đ 2 â đ 4 đ 4 đ 2 3đ 4 ī° (â 1, 0) (1, 0) 1 und â 1 (0, â 1) Vertical Asymptote Vertical Asymptote
12
tan đĨ= sin đĨ cos đĨ
13
Period: đ
đ Amplitude = 1 2 [đđđĨâđđđ]
Amplitude does not exist for the tangent function.
14
Vertical Asymptotes: đđâđ=â đ
đ đđ§đ đđâđ= đ
đ
15
f(x) = a tan(bx + c) + d â a: reflects in the x-axis
PERIOD: đ
đ PHASE SHIFT: âđ đ VERTICAL SHIFT: d đ â a: reflects in the x-axis đ< đ <đ: Vertically Compressed đ >đ: Vertically Expanded đ< đ <đ: Horizontally Expanded đ >đ: Horizontally Compressed
16
Domain: Range: period (b): Phase shift (c): x-intercepts: ī°
y- intercept: Oscillation: Symmetry: Asymptotes: Continuity: End Behavior: ī° đn, n Īĩ Z (0, 0) between â â and â Origin (odd function) discontinuous at
17
Example 3: Locate the vertical asymptotes, and sketch the graph of y = tan 2đĨ.
tan x â đ 2 V.A. â đ 4 â 1 đ 4 1 đ 2 x y â đ 4 V.A. â đ 8 â 1 đ 8 1 đ 4 Vertical Asymptotes đđâđ=â đ
đ đđ§đ đđâđ= đ
đ đđ=â đ
đ đđ§đ đđ= đ
đ đ=â đ
đ đđ§đ đ= đ
đ
18
Example 4a: Locate the vertical asymptotes, and sketch the graph of y = âtan đĨ 2 .
-tan x â đ 2 V.A. â đ 4 1 đ 4 â1 đ 2 x y âđ V.A. â đ 2 1 đ 2 â1 đ Vertical Asymptotes đđâđ=â đ
đ đđ§đ đđâđ= đ
đ đ đ =â đ
đ đđ§đ đ đ = đ
đ đ=âđ
đđ§đ đ=đ
19
Example 5b: Locate the vertical asymptotes, and sketch the graph of y = tan đĨâ 3đ 2 .
Phase Shift: 3đ 2 Vertical Asymptotes đđâđ=â đ
đ đđ§đ đđâđ= đ
đ x tan x â đ 2 V.A. â đ 4 â1 đ 4 1 đ 2 x y đ V.A. 5đ 4 â 1 3đ 2 7đ 4 1 2đ đâ đđ
đ =â đ
đ đđ§đ đâ đđ
đ = đ
đ đ=đ
đđ§đ đ=đđ
20
Checkpoints: 1. Find the amplitude and period of đ đĨ = 4cos 2đĨ .
2. Find the frequency and phase shift of đ đĨ = cos (2đĨâ đ 4 ) . phase shift = đ = đ 8 frequency = 1 đ 3. Find the phase shift and vertical shift of đ đĨ = 1 2 cos đĨ 6 â đ 2 â5 . phase shift = đ =3đ vertical shift =â5 4. Find the vertical asymptotes of đ đĨ = 1 2 tan 4đĨ . 4đĨ=â đ 2 4đĨ= đ 2 1 4 â4đĨ= 1 4 â âđ 2 1 4 â4đĨ= 1 4 â đ 2 đĨ=â đ 8 đĨ= đ 8
21
Assignment: Trig 6 WS, 1-6 all Unit Circle & Trig Test Wednesday 4/9
22
7th Warm-Up 4/8 1. Find the amplitude and period of đ đĨ = 4cos 2đĨ .
2. Find the frequency and phase shift of đ đĨ = cos (2đĨâ đ 4 ) . phase shift = đ = đ 8 frequency = 1 đ 3. Find the phase shift and vertical shift of đ đĨ = 1 2 cos đĨ 6 â đ 2 â5 . phase shift = đ =3đ vertical shift =â5 4. Find the vertical asymptotes of đ đĨ = 1 2 tan 4đĨ . 4đĨ=â đ 2 4đĨ= đ 2 1 4 â4đĨ= 1 4 â âđ 2 1 4 â4đĨ= 1 4 â đ 2 đĨ=â đ 8 đĨ= đ 8
23
Assignment: Trig 6 WS, 1-6 all Unit Circle & Trig Test Wednesday 4/9
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.