Presentation is loading. Please wait.

Presentation is loading. Please wait.

New Progress of High Current Gasdynamic Ion Source

Similar presentations


Presentation on theme: "New Progress of High Current Gasdynamic Ion Source"— Presentation transcript:

1 New Progress of High Current Gasdynamic Ion Source
Vadim Skalyga, Sergey Golubev, Ivan Izotov, Sergey Razin, Alexander Sidorov, Alexander Vodopyanov Olli Tarvainen, Hannu Koivisto, Taneli Kalvas Thierry Lamy, Thomas Thuillier Efim Oks, Georgy Yushkov, Aleksey Nikolaev

2 Outline - Quasi-gasdynamic regime of plasma confinement
- SMIS 37 gasdynamic ECR ion source Multicharged ions production Metallic ions production Proton beams extraction Other gasdynamic sources CW gasdynamic ion source Conclusion Institute of Applied Physics RAS, Nizhny Novgorod

3 Quasi-gasdynamic plasma confinement
Institute of Applied Physics RAS, Nizhny Novgorod

4 Geller and Gasdynamic ECRIS
Coulomb electron scattering into the loss-cone (collisionless) (collisional) Quasi-gasdynamic confinement Time of plasma escape Vs – ion sound velocity Leff – effective trap length Institute of Applied Physics RAS, Nizhny Novgorod

5 Quasi-gasdynamic confinement
Plasma confinement Averaged ion charge Collisionless confinement sec Ion current Quasi-gasdynamic confinement cm-3 Institute of Applied Physics RAS, Nizhny Novgorod

6 Ion charge vs HF Limitation for plasma density:
Institute of Applied Physics RAS, Nizhny Novgorod

7 Geller ECRIS vs Gasdynamic
I, mA Gasdynamic ECRIS Argon 100 10 Geller ECRIS 1 q +5 +10 +15 Institute of Applied Physics RAS, Nizhny Novgorod

8 SMIS 37 gasdynamic ECR ion source
Institute of Applied Physics RAS, Nizhny Novgorod

9 SMIS 37 general view Diagnostic chamber Plasma chamber -wave coupling
system Gyrotron Frequency 37,5 or 75 GHz Power up to 100 kW Pulse duration 1 ms Trap magnetic field up to 5 T Institute of Applied Physics RAS, Nizhny Novgorod

10 SMIS 37 plasma part Faraday cup
Institute of Applied Physics RAS, Nizhny Novgorod

11 SMIS 37 main goals Unique plasma parameters
(Ne > 1013 cm-3,   5 ÷ 50 s, Te  50 ÷ 300 eV) High current density ( j  100 ÷ 800 mA/cm2 ) Low emittance values High (unique) flexibility Institute of Applied Physics RAS, Nizhny Novgorod

12 Multicharged ions production
Institute of Applied Physics RAS, Nizhny Novgorod

13 Charge state distribution
Argon Nitrogen Institute of Applied Physics RAS, Nizhny Novgorod

14 Xenon plasma Institute of Applied Physics RAS, Nizhny Novgorod

15 Ion charge vs trap length
Institute of Applied Physics RAS, Nizhny Novgorod

16 Experiments with 37 and 75 GHz
Ion current, a.u. 75 GHz Analyser magnet current, A Institute of Applied Physics RAS, Nizhny Novgorod

17 Beam currents 160 mA 30 kV Institute of Applied Physics RAS, Nizhny Novgorod

18 Metallic ions production
Institute of Applied Physics RAS, Nizhny Novgorod

19 Gasdynamic charge breeding (SMIS 37-75 + MEVVA)
MEVVA plasma gun

20 Additional MEVVA ions stripping
Pt+ Pt++ Pt3+ Platinum No ECR heating Additional stripping with optimal parameters Microwave power 60 kW Magnetic field in the plug 2.6 T Vacuum arc current 80 A Pt3+ Pt6+ Pt5+ Pt4+ Fe++ 37 GHz 75 GHz

21 ECR source of EUV light MEVVA plasmagun Tin cathode Магнитные катушки
Microwaves 50 GHz MEVVA plasmagun Tin cathode Магнитные катушки Magnetic coils EUV Detector 13.5±1% nm Sn4+ 9+ Sn6+ Time, μs TOF signal Sn+ Sn3+ Sn2+ No microwave heating 50 GHz Experiment: 50 W to 4π to 13.5 nm ± 1% η ~ 0.5 % Source size 3 х 3 х 50 mm

22 Proton and deuteron beams extraction

23 Beam current measurements

24 Ion spectrum (Hydrogen, Deuterium)
H+, D+  94 % H2+, D2+ < 6 %

25 Neutron generation Expected neutron flux (100 kV): 5·1010 – 1·1011 s-1
“Low” energy D+ ion beams: D + D --> 3He3 + n MeV D + T --> 4He3 + n MeV Neutron flux 109 at 45 kV energy Expected neutron flux (100 kV): 5·1010 – 1·1011 s-1 5·1012 – 1·1013 s-1 T-target Targets: TiD2, ZrD2, ScD2 Up to 1,8 D atoms per one sorbent atom

26 Is SMIS 37-75 the only high current gasdynamic source?

27 Grenoble 60 GHz ECRIS Gyrotron frequency 60 GHz Power up to 200 kW
Pulse duration up to 1 ms Cusp magnetic trap Maximum magnetic field 7 T (injection) 1.8 A/cm2 ! 900 mA/cm2 ECR zone HF Ions O mA

28 should be demonstrated in Grenoble
Grenoble source goals High frequency and power High repetition rate Closed ECR zone Effective gas control MHD stability Boundary confinement regimes (probably) The real performance of gasdynamic ECRIS for multicharged ions production should be demonstrated in Grenoble

29 CW gasdynamic ion source
CW gyrotron 24 GHz, 5 kW Simple mirror trap SMIS 24 First test of SMIS 24 was performed More than 10 hours of operation First ion beam was extracted Beam current = 3 mA Ion current density in magnetic mirror = 1 A/cm2

30 Benefits of gasdynamic ECRIS
High current beams Low beam emittance Short leading and trailing edge of the pulse High ionization efficiency Simple scaling of source parameters Institute of Applied Physics RAS, Nizhny Novgorod

31 Applications High current ion beams for accelerators
Deuterium beams for neutron production EUV sources (13,5 nm) Short pulse ion beams production Institute of Applied Physics RAS, Nizhny Novgorod

32 Thank you for your attention Thanks to our collaborators Thanks a lot to Organizing committee for invitation and opportunity to present this talk


Download ppt "New Progress of High Current Gasdynamic Ion Source"

Similar presentations


Ads by Google