Download presentation
1
Right Triangle Trigonometry
SOH CAH TOA CHO SHA CAO
2
Warm-up Find the 6 trig function of θ = 13800
3
CHO SHA CAO SOH CAH TOA The sides of the right triangle are:
· the side opposite hyp θ · and the hypotenuse opp · the side adjacent adj The trigonometric functions are CHO SHA CAO SOH CAH TOA
4
Example: θ The six trig ratios are
Calculate the trigonometric functions for ∠θ . 4 3 5 θ hyp opp adj The six trig ratios are csc θ = sin θ = cos θ = sec θ = tan θ = cot θ =
5
Your Turn! Calculate the trigonometric functions for a 30° angle. 1 2
csc 30° = = = 2 opp hyp sin 30° = = cos 30° = = hyp adj sec 30° = = = adj hyp tan 30° = = = adj opp cot 30° = = = opp adj
6
Fundamental Trigonometric Identities
Cofunction Identities sin θ = cos(90°− θ ) cos θ = sin(90°− θ ) tan θ = cot(90°− θ ) cot θ = tan(90°− θ ) sec θ = csc(90°− θ ) csc θ = sec(90°− θ ) Reciprocal Identities sin θ = 1/csc θ cos θ = 1/sec θ tan θ = 1/cot θ cot θ = 1/tan θ sec θ = 1/cos θ csc θ = 1/sin θ Quotient Identities tan θ = sin θ /cos θ cot θ = cos θ /sin θ Pythagorean Identities sin2 θ + cos2 θ = 1 tan2 θ + 1 = sec2 θ cot2 θ + 1 = csc2 θ
7
Finding Values of Irregular angles
sin 300 = .50 sin 950 = cos 1800 = .-1 cos 1090 = sin 230 = tan 150 =
8
7 x 1 2 7 x 7 1 x (2) x = 14 Solve x: hyp x 7 opp opp hyp = = Sin 300
9
Your Turn 14 x √2 √2 √2 7 x 7 x √2 √2 2 7 x √2 7 x (2) Solve x: x hyp
= 14 x √2 45 √2 √2 adj 7 adj hyp = = 7 x cos 45 = 7 x √2 √2 2 7 √2 cos 450 = 7 x 30 7 √2 = 7 x (2)
10
x 12 √3 x 12 x √3 (12) x √3 12 Solve x: opp x 12 adj opp adj = =
60 12 adj opp adj = = x 12 Tan 600 √3 tan 600 = x 12 = x √3 (12) = x √3 12
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.