Presentation is loading. Please wait.

Presentation is loading. Please wait.

K-GMT Prerunner Instruments – M-Y Chun – SDSS-KSG 2008 Feb. 19 1 K-Giant Prerunner Instruments 2008. Feb. 19. SDSS-KSG 워크샵 천무영.

Similar presentations


Presentation on theme: "K-GMT Prerunner Instruments – M-Y Chun – SDSS-KSG 2008 Feb. 19 1 K-Giant Prerunner Instruments 2008. Feb. 19. SDSS-KSG 워크샵 천무영."— Presentation transcript:

1 K-GMT Prerunner Instruments – M-Y Chun – SDSS-KSG 2008 Feb. 19 1 K-Giant Prerunner Instruments 2008. Feb. 19. SDSS-KSG 워크샵 천무영

2 Telescopes & Discoveries 10 8 16001700180019002000 Galileo Sensitivity Improvement over the Eye Year of observations Telescopes alone Photographic & electronic detection 10 6 10 4 10 2 Huygens eyepiece Slow f ratios Short’s 21.5” Herschell’s 48” Rosse’s 72” Photography Mount Wilson 100”Mount Palomar 200” After Fig. 3.10 in Cosmic Discovery, Martin Harwit 10 CCDs Hubble Space Telescope 1 UDF Steve Beckwith

3

4 K-GMT Prerunner Instruments – M-Y Chun – SDSS-KSG 2008 Feb. 19 4 Giant Magellan Telescope Project

5 GMT Institutions Carnegie Observatories Harvard University Smithsonian Astrophysical Observatory Australian National Univ. Australian Astronomy Lim. Texas A&M University University of Texas, Austin University of Arizona + …OTHERS TBD (Korean!)

6 GMT Design Alt-az structure Seven 8.4-m primary mirrors Cast borosilicate honeycomb 25.3-m enclosed diameter 24-m diffraction equivalent 21.5-m equivalent aperture 3.2-m adaptive Gregorian secondary mirror Instruments mount below M1 at the Gregorian focus Conceptual Design Review: February, 2006 Strong endorsement of design / low risk / group involved

7 GMT Optical Design Primary Mirror –D1 = 25.3 meter –R1 = 36.0 meters –K = -0.9983 –f/0.7 primary mirror overall Gregorian secondary mirror –D2 = 3.2 meter –R2 = 4.2 meter –K2 = -0.7109 –Segments aligned with primary mirrors Combined Aplanatic Gregorian focus –f/8.2 final focal ratio –Field of view: 24 - 30 arc-min. –BFD = 5.5 meters –M2 conjugate = 160 m above M1

8 GMT Structure Design goal: Compact, stiff Structure Low wind cross-section Maximize modal performance Minimum swing radius -> cost Model parameters Analysis includes telescope structure, optics, & instrument load Height = 36.1 meters Moving mass = 991 metric tons Lowest vibration mode = 5.1 Hz

9 The mirrors

10 Assembling Mold for GMT Mirror 1 Machining and installation of 1681 ceramic fiber boxes in silicon carbide tub. Tops of boxes follow shape of aspheric surface

11 Loading the Glass Close furnace: melt and spin. Inspection of borosilicate glass.

12 Casting First Off-Axis Segment: July 2006 First GMT off-axis segment GMT-1 in oven: Heated to 1160˚C, spun at 4.9 rpm

13 Lift and washout Tilted into vertical plane Rear surface with floor tiles attached Segment with lifting fixture Removal of floor tiles

14 Stressed Lap Polishing Machines at SOML LOGTest tower Stressed lap

15 New test tower at Mirror Lab * Needed for 8.4 m off-axis segments * Long 36 m radius of curvature (LBT = 20 m) * Requires diffraction limited 4 m folding spherical mirror at top

16 New Test Tower

17 Looking up

18 GMT- 1 Progress 3.8-meter test fold sphere – July 07 GMT-1 in polishing cell ready for front-surface polishing – Sept 07

19 GMT Secondary Mirrors

20 Relative misalignments of primary segments can be corrected with secondary segments, and vice versa  Up to several millimeters

21 Segmented Gregorian Secondary Mirrors Adaptive secondary (ASM): Technology developed for MMT & LBT ~672 actuators per segment ~4700 actuators total Capacitive position sensors. In-telescope calibration source. Fast-steering secondary (FSM): Seven 1.06 m segments aligned with primary mirror segments Fast tip-tilt actuators

22 GMT Enclosure Concept

23 Enclosure Structure M3 Engineering Height: 60 m Diameter: 54 m Structure design & cost study complete 12/04 Thermal & flow studies On-site Facilities design

24 October 4, 2007 ___________________________________________________________ Giant Magellan Telescope Site Selected The Giant Magellan Telescope (GMT) Consortium announces that the GMT will be constructed at Cerro Las Campanas, Chile. Magellan (Manqui)Campanas Pk. Alcaino Pk. Ridge (Manquis) The Site

25 Site Testing Northern Chile sites GMT conducting tests at 4 LCO sites Coordinate/share data with other projects Test equipment Differential Image Motion Monitors (DIMM) Meteorological stations Multi-aperture Scintillation Sensor (MASS) All-sky camera Precipitable Water Vapor Magellan (Manqui)Campanas Pk. Alcaino Pk. Ridge (Manquis)

26 Light Pollution Calculation of light pollution based on satellite imagery obtained in 1996-1997. Lowest contours indicate 1- 10% increase over natural sky brightness Source: http://www.lightpollution.it

27 K-GMT Prerunner Instruments – M-Y Chun – SDSS-KSG 2008 Feb. 19 27 K-GMT Plan Project Period : 2009-2018 (10 yrs) Budget : 97M USD –10% of GMT : 60M$ –Science, Prerunner Instrument, K-GMT Office Job opened : ~32 (10 Engineers inc.)

28 K-GMT Prerunner Instruments – M-Y Chun – SDSS-KSG 2008 Feb. 19 28 Korean Institutes & Companies Adaptive Optics –Laser Guide Star –LTAO, GLAO, ExAO Steering Secondary Telescope Structure Dome Enclosure KNU ( 공주대 ) KRISS ( 표준연구원 ) (KIMM 기계연구원 ) Dusan Infra Core( 두산인 프라코아 ) … Science Instruments – Optical Design – Integration & Test – Fabrication Korean Astronomical Society KASI, Univ. KBSI ( 기초연 )

29 K-GMT Prerunner Instruments – M-Y Chun – SDSS-KSG 2008 Feb. 19 29 Giant Magellan Telescope Proposed 1 st Generation Instruments

30 K-GMT Prerunner Instruments – M-Y Chun – SDSS-KSG 2008 Feb. 19 30 GMT Science Requirements 1. High Level Science Goals 2. Definition of the Telescope and Related Facilities 3. Site Requirements 4. First Generation Instrument Specifications 5. Adaptive Optics Capabilities 6. Support Facilities 7. Operational Requirements 8. Image Size and Wave-Front Requirements

31 K-GMT Prerunner Instruments – M-Y Chun – SDSS-KSG 2008 Feb. 19 31 HighLevelScienceGoals

32 K-GMT Prerunner Instruments – M-Y Chun – SDSS-KSG 2008 Feb. 19 32 First Generation Instrument Candidates Instrument (  m) ResolutionFOV Modes Visible WF MOS0.4 - 1.0500-5000 60-150 MOS, Imager NIR MOS0.9 - 2.51500-5000 25-100 MOS/IFU Imager Visible Echelle0.3 - 1.020K - 100K 20  Single Object Fiber feed NIR Echelle1 - 550K-150K 30  Single Object MIR AO Imager3 - 255-3000 2 x 2 Coronagraph Nulling int. NIR AO Imager1 - 2.55-5000 30  ``Wide-field’’ & high definition modes NIR IFU`1 - 2.53000-50003” LTAO, MCAO(?)

33 K-GMT Prerunner Instruments – M-Y Chun – SDSS-KSG 2008 Feb. 19 33 GMT Instruments InstrumentP.I.ModePort 1. Visible-band Multi- object Spectrograph S. Shectman (Carnegie) Natural seeing, GLAO Gregorian 2. High Resolution Visible Spectrograph P. McQueenNatural seeingFolded port 3. Near-IR Multi-Object Spectrograph D. Fabricant (SAO) Natural Seeing, GLAO Gregorian 4. Near-IR Extreme AO Imager L. Close (U. Arizona) ExAOFolded port 5. Near-IR High Resolution Spectrometers D. Jaffe (U. Texas Austin) Natural seeing, LTAO Folded port 6. Mid-IR AO Imager & Spectrograph P. Hinz (U. Arizona) LTAOFolded port

34 K-GMT Prerunner Instruments – M-Y Chun – SDSS-KSG 2008 Feb. 19 34 Instrument Match to Science Goals

35 K-GMT Prerunner Instruments – M-Y Chun – SDSS-KSG 2008 Feb. 19 35 Gregorian Instrument Mounting Large survey instruments mount below AO instruments - always “hot” - above

36 K-GMT Prerunner Instruments – M-Y Chun – SDSS-KSG 2008 Feb. 19 36 GMT Instrument Platform (IP) Rotator GLAO Guider Folded port instruments Gregorian instruments capacity 6.4 m Dia. 7.6 m high 25 ton Optical MOS Near-IR MOS Mid-IR Spectrograh Echelle NIR AO imager NIR Echelle Small-intermediate sized intstruments Rapid exchange

37 K-GMT Prerunner Instruments – M-Y Chun – SDSS-KSG 2008 Feb. 19 37 Multiple Instruments at Gregorian Focus GMACSNIRMOS removed

38 K-GMT Prerunner Instruments – M-Y Chun – SDSS-KSG 2008 Feb. 19 38 First Generation Instrument Candidates 1. Visible Multi-Object Spectrograph Four-Arm Double Spectrograph 18’ x 9’ FOV - VPH grisms - Transmission optics R ~ 3500 (red) & ~ 1200 (blue) primary mode higher and low R modes available Multiplexing factor ~ 500 - 1000 depending on mode

39 K-GMT Prerunner Instruments – M-Y Chun – SDSS-KSG 2008 Feb. 19 39 GMACS- Visible band MOS Shectman, et. al.

40 K-GMT Prerunner Instruments – M-Y Chun – SDSS-KSG 2008 Feb. 19 40 GMACS- Visible band MOS

41 K-GMT Prerunner Instruments – M-Y Chun – SDSS-KSG 2008 Feb. 19 41 First Generation Instrument Candidates 3. Near-IR Multi-Object Spectrograph Refractive Optics - Collimator-Camera Design 7’ x 7’ Imaging Field - 5’ x 7’ Spectroscopic R = 3200 & R = 1500 modes 10k x 6k detector mosaic  (80) < 0.15” - 0.067” pixels IFU mode under development

42 K-GMT Prerunner Instruments – M-Y Chun – SDSS-KSG 2008 Feb. 19 42 GMT NIRMOS Instrument Mounting Flange Support Roller Interface Ring Fabricant, et. al.

43 K-GMT Prerunner Instruments – M-Y Chun – SDSS-KSG 2008 Feb. 19 43 GMT NIRMOS Instrument Platform Available Cassegrain Instrument Volume 6.35 m 5.2 m 7.62 m

44 K-GMT Prerunner Instruments – M-Y Chun – SDSS-KSG 2008 Feb. 19 44 First Generation Instrument Candidates 5. High Resolution Near-IR Spectrograph Two Channels: 1 - 2.5  m Natural Seeing or AO 3 - 5  m Diffraction-Limited Silicon Immersion gratings R ~ 25-100k (JHK) & 100-150K (L&M) 4k x 4k HgCdTe FPAs

45 K-GMT Prerunner Instruments – M-Y Chun – SDSS-KSG 2008 Feb. 19 45 Near-IR High-resolution Spectrometer Short wavelength module: J, K, H Jaffe, et. al.

46 K-GMT Prerunner Instruments – M-Y Chun – SDSS-KSG 2008 Feb. 19 46 K-GMT Instrument Strategy

47 K-GMT Prerunner Instruments – M-Y Chun – SDSS-KSG 2008 Feb. 19 47 Basic Strategy Base on the our experience in optical/IR instrument Join ASAP –Design & Integration/Test Phase are most important to us –More chance to find our role at early stage Step 2 : Magellan/MMT instrument –To increase our experience –To get Telescope time like US TSIP program Cooperation with Korean Institutes and companies

48 K-GMT Prerunner Instruments – M-Y Chun – SDSS-KSG 2008 Feb. 19 48 Our Experience in Optical/IR 1970- : SOAO 1980- : 4ch Photometer 1996 : BOAO 1998 : 2K CCD 2005 : BOES 2007 : KASINICS Multi-Object Optical Spectrograph (GMACS) and/or Near IR Imager/Spectrograph (NIRMOS) and/or Near-IR High Resolution Spectrometer (GMTNIRS)

49 K-GMT Prerunner Instruments – M-Y Chun – SDSS-KSG 2008 Feb. 19 49 Joint ASAP : Timeline

50 K-GMT Prerunner Instruments – M-Y Chun – SDSS-KSG 2008 Feb. 19 50 기기개발 로드맵 국내기기 WIFIS (4m) MMT 관측기기 GMT 관측기기 관측기기 독자개발 능력확보

51 K-GMT Prerunner Instruments – M-Y Chun – SDSS-KSG 2008 Feb. 19 51 K-GMT Prerunner Instruments

52 K-GMT Prerunner Instruments – M-Y Chun – SDSS-KSG 2008 Feb. 19 52 On-going Project : WIFIS WIFIS : Wide Integral-Field IR Spectrograph Image slicers-based IFU, FISICA (Florida Image Slicer for Infrared Cosmology & Astrophysics) R ~ 5,000; FOV = 13”X33” (at f/15 4m), each but whole J, H, or K band International collaboration : University of Toronto (Dae-Sik Moon) – design, construction, etc. University of Florida (Stephen S. Eikenberry) - FISICA KASI team – Warm Electronics, Part of Optical Design Expected first light : 2011 - 2007 - 08 Optical Design, Electronics - 2009 Opto-Mechanical Design & Fab. - 3.6m CFHT, 4m KPNO, 5m Paloma or 10.4m GTC

53 K-GMT Prerunner Instruments – M-Y Chun – SDSS-KSG 2008 Feb. 19 53 - 태양계 천체의 연구 - 별 탄생 영역의 관측을 통한 별 형성과정 연구 - 원시행성계 원반, 행성을 보유한 별 등의 관측을 통한 행성계 형성과정 연구 - 성협, 거대분자운, 조 기형 별, 밀집 HII 영역, 우리은하 중심부와 bulge 등 성간소광이심한 영역의 관측연구 - 우리은하 산개성단 및 구상성단의관측을 통한 성단 및 은하의 형성, 구조와 진화 연구 - 외부은하의 성단, 행성상성운, HII 영역 및 항성종족 연구 - 활동성은하핵, Starburst 은하, 초신성, 검은구멍, X 선 쌍성, 퀘이사 등의 관측 연구 - 은하단의 관측을 통한 은하단의 형성, 구조와 진화 및 암흑물질 연구 - 은하간 물질의 화학조성 연구 WIFIS Science

54 K-GMT Prerunner Instruments – M-Y Chun – SDSS-KSG 2008 Feb. 19 54 Univ. of Florida, KPNO 4m FOV (4m f/15) ResolutionBand Flamingo13”X33”1,500JH or HK WIFIS13”X33”5,000J, H, or K WIFIS vs. Flamingo

55 K-GMT Prerunner Instruments – M-Y Chun – SDSS-KSG 2008 Feb. 19 55 x y Datacube Imageslicer slit Micro- mirrors Fibrearray slit Fibres TelescopefocusSpectrographinput Lenslet arraySpectrographoutput Pupil imagery Micro-slicer Anamo- rphism Centre for Advanced Instrumentation Main techniques of IFS Slicers retain spatial information along slice

56 K-GMT Prerunner Instruments – M-Y Chun – SDSS-KSG 2008 Feb. 19 56 InstrumentTelescope Spectral Res. R Sp. range † Field of View Spacial Resolution ‡ IFU type FISICA+ FLAMINGO KPNO 4m~1300 ≤ 1.2 ㎛ 16″×33″0.8″×0.6″image slice GNIRS-IFUGemini S.~1,700 ≤ 1.5 ㎛ 3.2″×4.8″ image slice ""~6,000 ≤ 0.4 ㎛ 3.2″×4.8″ image slice NIFSGemini N.~5300 ≤ 0.4 ㎛ 3.0″×3.0″0.1″×0.04″image slice CIRPASSGemini S.~3000 ≤ 0.2 ㎛ 10″×5″ 0.35″ or 0.26″ lenslet + fiber UIST-IFUUKIRT≤4,000 ≤ 0.3 ㎛ 3.3″×6.0″0.24″×0.12″image slice † 수록된 파장폭은 K 밴드 부근에서 값이다. 짧은 파장 J, H 밴드에서는 더 좁아진다. ‡ 공간분해능은 조각나누기 거울 좁은 쪽 폭 × 2 픽셀 슬릿 폭이다. IFU IR Spectrograph

57 K-GMT Prerunner Instruments – M-Y Chun – SDSS-KSG 2008 Feb. 19 57 Step 2 : MMT/etc Instruments project BinospecIGNIRSHERMES ScienceLarge scale Structure & Galaxy Evol Star & Planet Formation Our Galaxy structure Chemical Tagging 사업기간 4 년 (2011) <4 년 부착망원경 MMTNOAO Tel (or IRTF) AAT 한국참여지분 >3.9MUSD ( 인건비 포함 ) 1.2M~0.2M ( 재료비만 ) 1M ( 정확하지 않음 ) 한국참여형태기술인력 파견, 기술습득 한국주도 혹은 공동개발 공동개발 파트제작제공

58 K-GMT Prerunner Instruments – M-Y Chun – SDSS-KSG 2008 Feb. 19 58 감사합니다.


Download ppt "K-GMT Prerunner Instruments – M-Y Chun – SDSS-KSG 2008 Feb. 19 1 K-Giant Prerunner Instruments 2008. Feb. 19. SDSS-KSG 워크샵 천무영."

Similar presentations


Ads by Google