Presentation is loading. Please wait.

Presentation is loading. Please wait.

Chapter 20: Biotechnology

Similar presentations


Presentation on theme: "Chapter 20: Biotechnology"— Presentation transcript:

1 Chapter 20: Biotechnology

2 Overview: The DNA Toolbox
Sequencing of the human genome was completed by 2007 DNA sequencing has depended on advances in technology, starting with making recombinant DNA In recombinant DNA, nucleotide sequences from two different sources, often two species, are combined in vitro into the same DNA molecule

3 Methods for making recombinant DNA are central to genetic engineering, the direct manipulation of genes for practical purposes DNA technology has revolutionized biotechnology, the manipulation of organisms or their genetic components to make useful products

4 DNA Cloning Most methods for cloning pieces of DNA in the laboratory share general features, such as the use of bacteria and their plasmids Plasmids are small circular DNA molecules that replicate separately from the bacterial chromosome Cloned genes are useful for making copies of a particular gene and producing a protein product

5 Gene cloning involves using bacteria to make multiple copies of a gene
Foreign DNA is inserted into a plasmid, and the recombinant plasmid is inserted into a bacterial cell Reproduction in the bacterial cell results in cloning of the plasmid including the foreign DNA This results in the production of multiple copies of a single gene

6 Figure 20.2 A preview of gene cloning and some uses of cloned genes
Cell containing gene of interest Bacterium 1 Gene inserted into plasmid Bacterial chromosome Plasmid Gene of interest Recombinant DNA (plasmid) DNA of chromosome 2 Plasmid put into bacterial cell Recombinant bacterium 3 Host cell grown in culture to form a clone of cells containing the “cloned” gene of interest Gene of Interest Protein expressed by gene of interest Copies of gene Protein harvested Figure 20.2 A preview of gene cloning and some uses of cloned genes 4 Basic research and various applications Basic research on gene Basic research on protein Gene for pest resistance inserted into plants Gene used to alter bacteria for cleaning up toxic waste Protein dissolves blood clots in heart attack therapy Human growth hor- mone treats stunted growth

7 Cell containing gene of interest Bacterium
Fig. 20-2a Cell containing gene of interest Bacterium 1 Gene inserted into plasmid Bacterial chromosome Plasmid Gene of interest Recombinant DNA (plasmid) DNA of chromosome 2 2 Plasmid put into bacterial cell Figure 20.2 A preview of gene cloning and some uses of cloned genes Recombinant bacterium

8 Recombinant bacterium
Fig. 20-2b Recombinant bacterium 3 Host cell grown in culture to form a clone of cells containing the “cloned” gene of interest Gene of Interest Protein expressed by gene of interest Copies of gene Protein harvested 4 Basic research and various applications Basic research on gene Basic research on protein Figure 20.2 A preview of gene cloning and some uses of cloned genes Gene for pest resistance inserted into plants Gene used to alter bacteria for cleaning up toxic waste Protein dissolves blood clots in heart attack therapy Human growth hor- mone treats stunted growth

9 Using Restriction Enzymes to Make Recombinant DNA
Bacterial restriction enzymes cut DNA molecules at specific DNA sequences called restriction sites A restriction enzyme usually makes many cuts, yielding restriction fragments The most useful restriction enzymes cut DNA in a staggered way, producing fragments with “sticky ends” that bond with complementary sticky ends of other fragments

10 DNA ligase is an enzyme that seals the bonds between restriction fragments

11 Restriction enzyme cuts sugar-phosphate backbones.
Fig Restriction site DNA 5 3 3 5 1 Restriction enzyme cuts sugar-phosphate backbones. Sticky end Figure 20.3 Using a restriction enzyme and DNA ligase to make recombinant DNA

12 Restriction enzyme cuts sugar-phosphate backbones.
Fig Restriction site DNA 5 3 3 5 1 Restriction enzyme cuts sugar-phosphate backbones. Sticky end 2 DNA fragment added from another molecule cut by same enzyme. Base pairing occurs. Figure 20.3 Using a restriction enzyme and DNA ligase to make recombinant DNA One possible combination

13 Restriction enzyme cuts sugar-phosphate backbones.
Fig Restriction site DNA 5 3 3 5 1 Restriction enzyme cuts sugar-phosphate backbones. Sticky end 2 DNA fragment added from another molecule cut by same enzyme. Base pairing occurs. Figure 20.3 Using a restriction enzyme and DNA ligase to make recombinant DNA One possible combination 3 DNA ligase seals strands. Recombinant DNA molecule

14 Cloning a Eukaryotic Gene in a Bacterial Plasmid
In gene cloning, the original plasmid is called a cloning vector A cloning vector is a DNA molecule that can carry foreign DNA into a host cell and replicate there

15 Producing Clones of Cells Carrying Recombinant Plasmids
Several steps are required to clone the hummingbird β-globin gene in a bacterial plasmid: The hummingbird genomic DNA and a bacterial plasmid are isolated Both are digested with the same restriction enzyme The fragments are mixed, and DNA ligase is added to bond the fragment sticky ends

16 Some recombinant plasmids now contain hummingbird DNA
The DNA mixture is added to bacteria that have been genetically engineered to accept it The bacteria are plated on a type of agar that selects for the bacteria with recombinant plasmids This results in the cloning of many hummingbird DNA fragments, including the β-globin gene

17 Fig TECHNIQUE Hummingbird cell Bacterial cell lacZ gene Restriction site Sticky ends Gene of interest ampR gene Bacterial plasmid Hummingbird DNA fragments Figure 20.4 Cloning genes in bacterial plasmids

18 Fig TECHNIQUE Hummingbird cell Bacterial cell lacZ gene Restriction site Sticky ends Gene of interest ampR gene Bacterial plasmid Hummingbird DNA fragments Nonrecombinant plasmid Recombinant plasmids Figure 20.4 Cloning genes in bacterial plasmids

19 Fig TECHNIQUE Hummingbird cell Bacterial cell lacZ gene Restriction site Sticky ends Gene of interest ampR gene Bacterial plasmid Hummingbird DNA fragments Nonrecombinant plasmid Recombinant plasmids Bacteria carrying plasmids Figure 20.4 Cloning genes in bacterial plasmids

20 Fig TECHNIQUE Hummingbird cell Bacterial cell lacZ gene Restriction site Sticky ends Gene of interest ampR gene Bacterial plasmid Hummingbird DNA fragments Nonrecombinant plasmid Recombinant plasmids Bacteria carrying plasmids Figure 20.4 Cloning genes in bacterial plasmids RESULTS Colony carrying non- recombinant plasmid with intact lacZ gene Colony carrying recombinant plasmid with disrupted lacZ gene One of many bacterial clones

21 Storing Cloned Genes in DNA Libraries
A genomic library that is made using bacteria is the collection of recombinant vector clones produced by cloning DNA fragments from an entire genome

22 Fig. 20-5 Foreign genome cut up with restriction enzyme Large insert with many genes Large plasmid or BAC clone Recombinant phage DNA Bacterial clones Recombinant plasmids Phage clones Figure 20.5 Genomic libraries (a) Plasmid library (b) Phage library (c) A library of bacterial artificial chromosome (BAC) clones

23 Screening a Library for Clones Carrying a Gene of Interest
A clone carrying the gene of interest can be identified with a nucleic acid probe having a sequence complementary to the gene This process is called nucleic acid hybridization

24 Then we would synthesize this probe
A probe can be synthesized that is complementary to the gene of interest For example, if the desired gene is Then we would synthesize this probe 5 G G C T A A C T T A G C 3 3 C C G A T T G A A T C G 5

25 The DNA probe can be used to screen a large number of clones simultaneously for the gene of interest
Once identified, the clone carrying the gene of interest can be cultured

26 Radioactively labeled probe molecules
Fig. 20-7 TECHNIQUE Radioactively labeled probe molecules Probe DNA Gene of interest Multiwell plates holding library clones Single-stranded DNA from cell Film Figure 20.7 Detecting a specific DNA sequence by hybridizing with a nucleic acid probe Nylon membrane Nylon membrane Location of DNA with the complementary sequence

27 Expressing Cloned Eukaryotic Genes
After a gene has been cloned, its protein product can be produced in larger amounts for research Cloned genes can be expressed as protein in either bacterial or eukaryotic cells

28 Bacterial Expression Systems
Several technical difficulties hinder expression of cloned eukaryotic genes in bacterial host cells To overcome differences in promoters and other DNA control sequences, scientists usually employ an expression vector, a cloning vector that contains a highly active prokaryotic promoter

29 Amplifying DNA in Vitro: The Polymerase Chain Reaction (PCR)
The polymerase chain reaction, PCR, can produce many copies of a specific target segment of DNA A three-step cycle—heating, cooling, and replication—brings about a chain reaction that produces an exponentially growing population of identical DNA molecules

30 molecules; 2 molecules (in white boxes) match target sequence
Fig. 20-8 TECHNIQUE 5 3 Target sequence Genomic DNA 3 5 1 Denaturation 5 3 3 5 2 Annealing Cycle 1 yields 2 molecules Primers 3 Extension New nucleo- tides Figure 20.8 The polymerase chain reaction (PCR) Cycle 2 yields 4 molecules Cycle 3 yields 8 molecules; 2 molecules (in white boxes) match target sequence

31 Gel Electrophoresis and Southern Blotting
One indirect method of rapidly analyzing and comparing genomes is gel electrophoresis This technique uses a gel as a molecular sieve to separate nucleic acids or proteins by size A current is applied that causes charged molecules to move through the gel Molecules are sorted into “bands” by their size

32 Figure 20.9 Gel electrophoresis
TECHNIQUE Mixture of DNA mol- ecules of different sizes Power source Cathode Anode + Gel 1 Power source + Longer molecules 2 Shorter molecules RESULTS Figure 20.9 Gel electrophoresis

33 Fig TECHNIQUE Heavy weight Restriction fragments DNA + restriction enzyme I II III Nitrocellulose membrane (blot) Gel Sponge I Normal -globin allele II Sickle-cell allele III Heterozygote Paper towels Alkaline solution 1 Preparation of restriction fragments 2 Gel electrophoresis 3 DNA transfer (blotting) Radioactively labeled probe for -globin gene Figure Southern blotting of DNA fragments Probe base-pairs with fragments I II III I II III Fragment from sickle-cell -globin allele Film over blot Fragment from normal -globin allele Nitrocellulose blot 4 Hybridization with radioactive probe 5 Probe detection

34 Reverse transcriptase-polymerase chain reaction (RT-PCR) is quicker and more sensitive
Reverse transcriptase is added to mRNA to make cDNA, which serves as a template for PCR amplification of the gene of interest The products are run on a gel and the mRNA of interest identified

35 TECHNIQUE 1 cDNA synthesis mRNAs cDNAs Primers 2 -globin gene 3
Fig TECHNIQUE 1 cDNA synthesis mRNAs cDNAs Primers 2 PCR amplification -globin gene 3 Gel electrophoresis Figure RT-PCR analysis of expression of single genes Embryonic stages RESULTS

36 Cloning Organismal cloning produces one or more organisms genetically identical to the “parent” that donated the single cell

37 Cloning Plants: Single-Cell Cultures
One experimental approach for testing genomic equivalence is to see whether a differentiated cell can generate a whole organism A totipotent cell is one that can generate a complete new organism, can become any cell in body

38 EXPERIMENT RESULTS Transverse section of carrot root 2-mg fragments
Fig EXPERIMENT RESULTS Transverse section of carrot root 2-mg fragments Figure Can a differentiated plant cell develop into a whole plant? Fragments were cultured in nu- trient medium; stirring caused single cells to shear off into the liquid. Single cells free in suspension began to divide. Embryonic plant developed from a cultured single cell. Plantlet was cultured on agar medium. Later it was planted in soil. A single somatic carrot cell developed into a mature carrot plant.

39 Cloning Animals: Nuclear Transplantation
In nuclear transplantation, the nucleus of an unfertilized egg cell or zygote is replaced with the nucleus of a differentiated cell The older the donor nucleus, the lower the percentage of normally developing tadpoles

40 EXPERIMENT RESULTS Frog embryo Frog egg cell Frog tadpole UV
Fig Frog embryo Frog egg cell Frog tadpole EXPERIMENT UV Fully differ- entiated (intestinal) cell Less differ- entiated cell Donor nucleus trans- planted Donor nucleus trans- planted Enucleated egg cell Egg with donor nucleus activated to begin development RESULTS Figure Can the nucleus from a differentiated animal cell direct development of an organism? Most develop into tadpoles Most stop developing before tadpole stage

41 Reproductive Cloning of Mammals
In 1997, Scottish researchers announced the birth of Dolly, a lamb cloned from an adult sheep by nuclear transplantation from a differentiated mammary cell Dolly’s premature death in 2003, as well as her arthritis, led to speculation that her cells were not as healthy as those of a normal sheep, possibly reflecting incomplete reprogramming of the original transplanted nucleus

42 TECHNIQUE RESULTS Mammary cell donor Egg cell donor
Fig TECHNIQUE Mammary cell donor Egg cell donor 1 2 Egg cell from ovary Nucleus removed Cultured mammary cells 3 Cells fused 3 Nucleus from mammary cell 4 Grown in culture Early embryo Figure Reproductive cloning of a mammal by nuclear transplantation For the Discovery Video Cloning, go to Animation and Video Files. 5 Implanted in uterus of a third sheep Surrogate mother 6 Embryonic development Lamb (“Dolly”) genetically identical to mammary cell donor RESULTS

43 Since 1997, cloning has been demonstrated in many mammals, including mice, cats, cows, horses, mules, pigs, and dogs CC (for Carbon Copy) was the first cat cloned; however, CC differed somewhat from her female “parent”

44 Fig Figure CC, the first cloned cat, and her single parent

45 Stem Cells of Animals A stem cell is a relatively unspecialized cell that can reproduce itself indefinitely and differentiate into specialized cells of one or more types Stem cells isolated from early embryos at the blastocyst stage are called embryonic stem cells; these are able to differentiate into all cell types The adult body also has stem cells, which replace nonreproducing specialized cells

46 From bone marrow in this example
Fig Embryonic stem cells Adult stem cells Early human embryo at blastocyst stage (mammalian equiva- lent of blastula) From bone marrow in this example Cells generating all embryonic cell types Cells generating some cell types Cultured stem cells Different culture conditions Figure Working with stem cells Different types of differentiated cells Liver cells Nerve cells Blood cells

47 Insert RNA version of normal allele into retrovirus.
Fig Cloned gene 1 Insert RNA version of normal allele into retrovirus. Viral RNA 2 Let retrovirus infect bone marrow cells that have been removed from the patient and cultured. Retrovirus capsid 3 Viral DNA carrying the normal allele inserts into chromosome. Bone marrow cell from patient Figure Gene therapy using a retroviral vector Bone marrow 4 Inject engineered cells into patient.

48 Fig (a) This photo shows Earl Washington just before his release in 2001, after 17 years in prison. Source of sample STR marker 1 STR marker 2 STR marker 3 Figure STR analysis used to release an innocent man from prison For the Discovery Video DNA Forensics, go to Animation and Video Files. Semen on victim 17, 19 13, 16 12, 12 Earl Washington 16, 18 14, 15 11, 12 Kenneth Tinsley 17, 19 13, 16 12, 12 (b) These and other STR data exonerated Washington and led Tinsley to plead guilty to the murder.

49 Agrobacterium tumefaciens
Fig TECHNIQUE Agrobacterium tumefaciens Ti plasmid Site where restriction enzyme cuts T DNA RESULTS DNA with the gene of interest Figure Using the Ti plasmid to produce transgenic plants For the Cell Biology Video Pronuclear Injection, go to Animation and Video Files. For the Discovery Video Transgenics, go to Animation and Video Files. Recombinant Ti plasmid Plant with new trait

50 The Sanger Method (DNA Sequencing)
Nobel prize in 1980 for sequencing DNA Uses dideoxynucleotide triphosphates (ddNTPs) as DNA chain terminators ( 4 exist A, T, C, G) DNA separated, primers added, DNA polymerase adds nucelotides ddNTPs added to terminate building of DNA Run a gel to determine fragment length, DNA sequencing

51 Human Genome Project Sequencing of the human genome
Human Genome Project began in 1990, the sequencing was largely completed by 2003 The project had three stages: Genetic (or linkage) mapping Restriction Fragment Length Polymorphisms (RFLPs) - differences in single nucleotides that change the fragment length, enzyme cuts in different place Known as a genetic marker (identifiable DNA sequence) Physical mapping- finding the distances between genetic markers DNA sequencing- determine complete nucleotide sequencing

52 Non Coding DNA Pseudogenes are former genes that have accumulated mutations and are nonfunctional Repetitive DNA is present in multiple copies in the genome Where might you find repetitive DNA?

53 Transposable Elements
The first evidence for wandering DNA segments came from geneticist Barbara McClintock’s breeding experiments with Indian corn

54 Transposable Elements
75% of repetitive DNA Transposable elements move from one site to another in a cell’s DNA; they are present in both prokaryotes and eukaryotes Transposons: move within a genome by means of a DNA intermediate (enzyme) Who cares?: Can lead to small variations within species Changes the size of RFLPs (genetic markers) *What would happen if a transposon interuppted a gene?

55 Transposon is copied New copy of retrotransposon Reverse transcriptase
Fig. 21-9 New copy of transposon Transposon DNA of genome Transposon is copied Insertion Mobile transposon (a) Transposon movement (“copy-and-paste” mechanism) New copy of retrotransposon Retrotransposon Figure 21.9 Movement of eukaryotic transposable elements RNA Insertion Reverse transcriptase (b) Retrotransposon movement

56 Tandem Repeats Short Tandem Repeat: A series of repeating units of 2 to 5 nucleotides The repeat number for STRs can vary among sites (within a genome) or individuals STRs are common in centromeres and telomeres, where it probably plays structural roles in the chromosome

57 Mutation leads to Variation/Evolution
The basis of change at the genomic level is mutation, which underlies much of genome evolution Causes of mutations? Insertions, Deletions, Inversions, Transposons, accidents in meiosis, errors or duplications when exon shuffling *But we show many similarities between species!

58 To get you thinking… Insertion of transposable elements within a protein-coding sequence may block protein production Insertion of transposable elements within a regulatory sequence may increase or decrease protein production

59 Humans Vs. Chimps Human and chimpanzee genomes differ by 1.2%, at single base-pairs, and by 2.7% because of insertions and deletions Several genes are evolving faster in humans than chimpanzees These include genes involved in defense against malaria and tuberculosis, regulation of brain size, and genes that code for transcription factors Why is this significant?

60 FOXP2 Gene Humans and chimpanzees differ in the expression of the FOXP2 gene whose product turns on genes involved in vocalization Differences in the FOXP2 gene may explain why humans but not chimpanzees communicate by speech

61 Comparing Genomes Within a Species
As a species, humans have only been around about 200,000 years and have low within-species genetic variation Variation within humans is due to single nucleotide polymorphisms, inversions, deletions, and duplications, transposons changing RFLP size These variations are useful for studying human evolution and human health

62 Conservation of Developmental Genes
Molecular analysis of the homeotic genes in Drosophila has shown that they all include a sequence called a homeobox ( sequence of 180 nucleotides) An identical or very similar nucleotide sequence found in homeotic genes of both vertebrates and invertebrates Responsible for laying out body plan (segments) A gene that controls all the genes involved in development

63 Adult fruit fly Fruit fly embryo (10 hours) Fly chromosome Mouse
Fig Adult fruit fly Fruit fly embryo (10 hours) Fly chromosome Mouse chromosomes Figure Conservation of homeotic genes in a fruit fly and a mouse Mouse embryo (12 days) Adult mouse


Download ppt "Chapter 20: Biotechnology"

Similar presentations


Ads by Google