Download presentation
Presentation is loading. Please wait.
Published byCharity Norton Modified over 9 years ago
1
From Exit Wave to Structure: Is the Phase Object Approximation Useless? ° University of Antwerp, Department of Physics, B-2020 Antwerp, Belgium °°NCEM, Lawrence Berkeley Laboratory, U.S.A. D. Van Dyck°, P. Geuens°, C. Kisielowski°°, J.R. Jinschek°° Cairns, Australia July 2, 2003
2
Evolution in Science describe understand design macro micro nano
4
Evolution in theory Prediction of properties (materials, molecules from “first principles” Ingredients: atom positions with high precision (0.01 Å) experimenttheory
5
strong interaction nanostructures sub surface information easy to detect use of lenses (real space Fourier space) bright sources “A synchrotron in the electron microscope”[1][1] less radiation damage than X-rays[2][2] sensitive to ionization of atoms[3].[3] [1][1] M. Brown [2][2] R. Henderson [3][3] J. Spence Advantages of electrons:
6
RadiationSource BrightnessElastic Mean-Free Absorption Length Minimum Probe Size (particles/cm2 / Path (nm) (nm)(nm) eV/steradian) Neutrons10 24 10 7 10 8 10 6 X rays10 26 10 3 10 5 10 2 Electrons10 29 10 1 10 2 10 -1 1 Source: NTEAM Project
7
Electron microscope
8
Electron microscope = coherentimaging Image wave = object wave * impuls response Deblurring (deconvolution) of the electron microscope 1) retrieve image phase: holography 2) deconvolute the impulse response function 3) reconstruct exit (object) wave OB *P I IM = | IM | 2
10
Focus variation method
12
transport of intensity equation
13
Phase of total exit wave 5 Al: Cu Courtesy C. Kisielowski (NCEM,Berkeley) Phase of total exit wave Au [110] wedge
15
Meyer R.R. et al., Science 289 (2000), 1324-1326.
16
The phase object approximation Wavelength of the electron Wavelenght inside the object Relative phase shift
17
Total phase shift Transmission function: ( x,y) = exp i V p (x,y) Weak object With
18
Zone axis orientation: channelling Atoms superimpose along beam direction Strong scattering Plane wave methods not appropriate Atom column as a new basis
19
From exit wave to structure: channelling theory light atoms heavy atoms light atoms heavy atoms
20
High energy equation: e - feels the mean potential of the atom column:
21
Expansion in eigenfunctions of the Hamiltonian: with
22
Energy Delocalized states Localized 1s state U(x,y) < 0.1 nm S-state model S-state
23
parameterization of the analytic expression of the wave function: fast calculation analytic derivatives
24
S-state model multislice phase amplitude GaN [110] thickness 8 nm 300 keV
25
[001] [110]
26
Exit wave of column Amplitude peaked at the atom column position Phase constant over the atom column
27
Van Dyck D., Op de Beeck M., UM 64 (1996), 99-107. Amplitude ofPhase of Cu Au
28
Phase of total exit wave 5 Al: Cu Amplitude of Phase of Courtesy C. Kisielowski, J.R. Jinschek (NCEM, Berkeley) 5 Al + Cu Phase of
29
Im ( ) Re ( ) 0 0
30
Au [110] – Vacuum wave Courtesy C. Kisielowski, J.R. Jinschek (NCEM, Berkeley)
31
Re ( ) = exit wave Im ( ) exit wave - vacuum vacuum = Re ( ) Im ( ) layer 1 layer 2 layer 10 layer 9 Courtesy C. Kisielowski, J.R. Jinschek (NCEM, Berkeley)
32
Au [110] – Vacuum wave Courtesy C. Kisielowski, J.R. Jinschek (NCEM, Berkeley)
33
EW phase image EW amplitude image exit wave - vacuum vacuum = “vacuum” measured in hole Courtesy C. Kisielowski, J.R. Jinschek (NCEM, Berkeley) Au [110] hole (300 keV)
34
exit wave - vacuum vacuum = Im ( ) Re ( ) Courtesy C. Kisielowski, J.R. Jinschek (NCEM, Berkeley)
35
counts phase [rad] Im ( ) Re ( ) amplitude Gauss fitting: sigma 0.1 rad Radial data distribution Averaged amplitude Courtesy C. Kisielowski, J.R. Jinschek (NCEM, Berkeley)
36
Ultimate resolution = atom Transfer functions
37
Resolving atoms = new situation Model based fitting (quantitative) resolutionprecision resolving refining resolution precision 1 Å0.01 Å
38
resolution dose ρ = 1 Å N= 10000 σ CR = 0.01 Å Å ρ σ CR resolution versus precision Precision (error bar)
41
Is HREM able to resolve amorphous structures? Requirement: or parametersdata
42
3D HR Electron Tomography (HRET) parameters data Amorphous structures never resolvable in 2D N/a 3 < 1.5/ 2 Ångstrom resolution sufficient in 3D
43
Conclusions All object information can be obtained from the exit wave Single atom sensitivity The phase object approximation is not appropriate The channelling wave should be used instead
45
Scanning Electron Microscopy & HREM & Spectroscopy A STEM / HRTEM : Tecnai G 2 Scanning coils Sample Focused e-beam HAADF Detector Image Filter Upgrade to HRTEM/STEM @ NCEM in 2002 First instrument of this kind in the US Probe size 0.13 nm (currently at NCEM: ~1 nm) Energy resolution: 200 - 300 meV (currently: ~1eV) Information Limit : < 0.1 nm @ 200 kV Phase Contrast & Z-Contrast & Spectroscopy on identical areas Current technology: HAADF-image Local energy spectrum Dislocation core in GaN [0001] 0.2 nm N. Browning, C. Kisielowski, LDRD, 2002-2003
46
Courtesy: L.M. Brown, Inst. Phys. Conf. Ser. 153 (1997), p. 17-22.
48
Experiment design Intuition is misleading “Ideal” HREM:Cs = 0 f = 0 “Ideal object”:phase object we need a strategy no image contrast
49
Spherical aberration corrector? improves the point resolution Chromatic aberration corrector? improves the information limit Monochromator? improves the information limit reduction of electrons Ultramicroscopy 89(2001), 275-290 Do these correctors improve the precision as well?
51
The electron microscope of the future Quantitative 3D structure determination on atomic scale Spectroscopy on atomic scale Flexibility, experiment design Nanolab The ideal instrument for the characterisation of nanostructures
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.