Download presentation
Presentation is loading. Please wait.
Published byGwenda Jacobs Modified over 9 years ago
1
Christian Buck, MPIK Heidelberg for the Double Chooz Collaboration LAUNCH March 23rd, 2007 The Double Chooz experiment
2
Outline Motivation The Double Chooz Concept and Design Scintillator development at MPIK Summary
3
Why Double Chooz ? Improved knowledge of mixing matrix Θ 13 controls 3 flavor effects (e.g. CP violation only for Θ 13 > 0) Discovery potential: models often close to experimental bound Complementarity to beam experiments - Degeneracies + parameter correlations - Optimize future experiments Discrimination power for normal hierarchy in 0νββ depends on Θ 13 Δm sol 2 ~ 8∙10 -5 eV 2, sin 2 (2Θ 12 ) ~ 0.86 Δm atm 2 ~ 2.5∙10 -3 eV 2, sin 2 (2Θ 23 ) ~ 1 ν2ν2 Δm atm 2 Δm sol 2 ν1ν1 ν3ν3 sin 2 Θ 13 sin 2 Θ 23 sin 2 Θ 12 νeνe νμνμ ντντ
4
Interest of International Atomic Energy Agency (IAEA) in ν e detection -Monitoring of single reactors -Monitoring of countries Intensity and shape of spectrum depend on isotopic composition Pu content! Use Double Chooz near detector as prototype for reactor monitoring Thermal power (1% ?) Non-proliferation
5
Current proposals December 2002: 1st European meeting, MPIK April 2003 – February 2005: 4 int. workshops in U.S., Germany, Japan and Brazil 1st Double Chooz Meeting: Nov 2003 Angra Double-Chooz Kaska Daya bay RENO
6
Double Chooz collaboration Spokesman: H. de Kerret (APC) France: CEA/Dapnia Saclay, APC, Subatech (Nantes) Germany: MPIK Heidelberg, TU München, EKU Tübingen, Universität Hamburg, RWTH Aachen Italy: LNGS (Gran Sasso) Russia: RAS, Kurchatov Institute (Moscow) USA: Alabama, ANL, Chicago, Drexel, Kansas State, LLNL, LSU, Notre Dame, Tennessee Spain: CIEMAT Japan: HIT, Kobe, MUE, Niigata, Tohoku, TGU, TIT, TMU England: University of Oxford
7
The Double Chooz concept ν ν ν ν ν ν ν ν 1051 m 280 m Site location: France D near D far
8
The labs Far detector (300 m w.e., 1.05 km)Near detector (75 m w.e., 280 m) Δm 2 atm = 2.8·10 -3 eV 2 (MINOS best fit) Constant flux ratios
9
Improving Chooz 0.3 %1.5 %Det.eff. < 0.6%2.7 %Σ system. 0.4%2.8%Statistical 0.2 %0.8 %# protons <0.1 %0.7 %Power <0.1 %0.6 %E/fission <0.1 %1.9 %Flux, σ DCChoozerror CHOOZ limit sin 2 (2θ 13 ) < 0.12 – 0.20 R = 1.01 2.8%(stat) 2.7%(syst) Reactor Detector Δm 2 (eV) 2 sin 2 (2Θ) 10 -2 10 -3
10
Sensitivity 2008 Sensitivity 2008 – 2013 (near detector starts 16 months after far) for m 2 atm = 2.8·10 -3 eV 2
11
Detector design TARGET: (th = 2,3m) - Acrylic vessel (th = 8mm) - 10,3 m 3 LS (1 g/l Gd) γ-catcher: (th = 0,55m) -Acrylic vessel (th = 12mm) - 22,6 m 3 LS Buffer: (th = 1,05m) -Steel vessel (th = 3 mm) -114 m 3 mineral oil Inner veto: (th = 0,5m) -Steel vessel th = 10 mm) -~80 m 3 LS SHIELDING (th = 17 cm) - Steel 7m
12
Neutrino signal n e p 511 keV e+e+ ~ 8 MeV Gd Target: Gd-loaded liquid scintillator Events/200 KeV/3 years sin 2 (2 13 )=0.04 sin 2 (2 13 )=0.1 sin 2 (2 13 )=0.2 Energy [MeV] Neutrino rates: - far: ~70/day - near: ~1000/day
13
Correlated backgrounds n ~ 8 MeV n deposits energy Gd Fast neutrons Chooz rate: ~1/day Double Chooz simulation: Far: N b < 0.6/day (90% CL) Near: N b ~ 3.3/day (90% CL) β-n-cascades (spallation products: 9 Li, 11 Li, 8 He) Expected rate: Far: 1.4/day, Near: 9/day Long-lived
14
Mockup Goal: - Find technical solutions - Define interfaces - Material compatiblity - Test filling procedure Volumes: - 100 liter Target - 200 liter Gamma Catcher - 700 liter Buffer Match scintillator properties: - Densities (1 % in DC) - Light yield
15
Filling system Simultaneous filling Air driven pumps Tubing and valves PFA Filling 2005 MPIK-HD
16
Mockup results Gd-concentration unchanged Optical properties stable
17
Metal loaded scintillators Development at MPIK since 2000 (C.Buck, F.X.Hartmann, D.Motta, T.Lasserre, S.Schönert, U.Schwan) Wide interest in different fields: -Solar neutrino physics (In, Yb,…) -Reactors experiments (Gd) -Geo-neutrinos (Gd) -0νββ-decay ( 150 Nd)
18
Scintillator development at MPIK Metal-β-diketonates: R1R1 3+ M R2R2 O O O O O O HC - C-C- H C-C- H R1R1 R1R1 R2R2 R2R2 How to dissolve metal in organic scintillator? Method 1: Organometallic compound Requirements: solubility no light quenching optical transparency radiopurity low reactivity (stability!) Method 2: Carboxylate system stabilized by pH (since 2000)
19
Attenuation length / stability Stability tests up to 3 years Tests of concentrates Temperature tests Cross check in Saclay Measured by UV/Vis 10 cm cells Absorption + Scattering! No fluors: > 10 m in ROI ROI
20
Scintillator stability Palo Verde: A.G.Piepke, S.W.Moser, V.M.Novikov NIM A 342 (1999) 392-398 Chooz: Time variation fit of attenuation length: Parameter v Chooz: (4.2 ± 0.4)∙10 -3 /d * BDK-system: ≤ 7.5∙10 -5 /d * Chooz Coll., Eur. Phys. J. C27, (2003) 331-374 [v = (1.5 – 2.8)·10 -3 /d)]
21
Scintillator system Excitation by ionizing particle PMT Metal Secondary wavel. shifter Fluorsolvent
22
Gd complex Approach: Gd-β-diketone Purification by sublimation Full scale production started! 8·10 -10 8.7·10 -13 < 2.4·10 -13 Conc. [g/g] 0.250.032< 0.03A/det. [Bq] 0.00065 Th 0.005< 0.0006A/kg [Bq] KU GeMPI at LNGS (M.Laubenstein)
23
Scintillator solvent PXE/dodecane mixture (20/80 Vol): Optimized ratio - PXE improves light yield - Dodecane improves material compatibility + number of H Column purification High flash point, low toxicity Solvents used in KamLand (Dodecane), Borexino (PXE in CTF) Backup Linear alkylbenzene
24
Fluor choice Primary fluor properties: Light yield Emission spectrum Energy transfer parameters Transparency Radiopurity Scintillator emission spectrum
25
Energy transfer model M DA * excitation...... M.......... M M O C H In O O O O O Me. C.Buck, F.X.Hartmann, D.Motta, S.Schönert, Chem.Phys.Lett.435 (2007) 252 – 256 Developed for Indium system
26
Scintillator Summary 2000 – 2003: Development metal loaded scintillator (In, Yb, Nd, Gd) 2003: First tests Gd-loaded scintillators –Gd(acac) 3 scintillator –pH controlled carboxylate (TMHA) scintillator 2004: Optimization synthesis 2005: Double Chooz mockup 2006: Outsourcing of Gd-BDK production –Successful sublimation at company –First radiopurity measurements
27
Summer 2006: New division 3 x 24m 3 Iso-containersLarge scale production Gd-material Scintillator building 60 m³ liquids
28
Scintillator hall Dec 06Jan 07 Feb 07Mar 07
29
Summary Double Chooz searches for the neutrino mixing angle θ 13 - Sensitivity: sin 2 (2Θ 13 ) < 0.02 - 0.03 (90% CL) (Chooz bound sin 2 (2Θ 13 ) < 0.2) - Start data taking: 2008 Main hardware contribution of MPIK: -Development + production target Gd-scintillator (10.3 m³) -Tuning + production of γ-catcher scintillator (22 m³) -Design and construction scintillator mixing system Status -Major components ordered -Construction of scintillator hall
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.