Download presentation
Presentation is loading. Please wait.
Published byShannon Jones Modified over 9 years ago
2
MIN:50x1 + 83x2 + 130x3 + 61y1 + 97y2 + 145y3 Demand Constraints x 1 + y 1 = 3,000} model 1 x 2 + y 2 = 2,000} model 2 x 3 + y 3 = 900} model 3 Resource Constraints 2x 1 + 1.5x 2 + 3x 3 <= 10,000 } wiring 1x 1 + 2.0x 2 + 1x 3 <= 5,000 } harnessing Nonnegativity Conditions x 1, x 2, x 3, y 1, y 2, y 3 >= 0 Make / buy decision : Constraints y1 = 3,000- x1 y2 = 2,000-x2 y3 = 900-x3 MIN:50x1 + 83x2 + 130x3 + 61(3,000- x1) + 97(2,000-x2) + 145(900-x3 ) y1 = 3,000- x1>=0 y2 = 2,000-x2>=0 y3 = 900-x3>=0 x1 <= 3,000 x2 <= 2,000 x3 <= 900
3
Problem ( HHL 3.21, HL 3.4.17) Men, women, and children gloves. Material and labor requirements for each type and the corresponding profit are given below. GloveMaterial (sq-feet)Labor (hrs)Profit Men2.58 Women1.5.7510 Children1.676 Total available material is 5000 sq-feet. We can have full time and part time workers. Full time workers work 40 hrs/w and are paid $13/hr Part time workers work 20 hrs/w and are paid $10/hr We should have at least 20 full time workers. The number of full time workers must be at least twice of that of part times.
4
Decision variables X 1 : Volume of production of Men’s gloves X 2 : Volume of production of Women’s gloves X 3 : Volume of production of Children’s gloves Y 1 : Number of full time employees Y 2 : Number of part time employees
5
Constraints Row material constraint 2X1 + 1.5X2 + X3 5000 Full time employees Y1 20 Relationship between the number of Full and Part time employees Y1 2 Y2 Labor Required.5X 1 +.75X 2 +.67X 3 40 Y 1 + 20Y 2 Objective Function Max Z = 8X 1 + 10X 2 + 6X 3 - 520 Y 1 - 200 Y 2 Non-negativity X 1, X 2, X 3, Y 1, Y 2 0
6
Constraints 2X1 + 1.5X2 + X3 5000 Y1 20 Y1 - 2 Y2 0.5X 1 +.75X 2 +.67X 3 - 40 Y 1 - 20Y 2 0 Max Z = 8X 1 + 10X 2 + 6X 3 - 520 Y 1 - 200 Y 2
7
Problem ( HHL Problem 3.23, HL 3.4.19) Strawberry shake production Several ingredients can be used in this product. Ingredient calories from fat Total calories Vitamin Thickener Cost ( per tbsp) (per tbsp) (mg/tbsp) (mg/tbsp) ( c/tbsp) Strawberry flavoring 1 50 20 3 10 Cream 75 100 0 8 8 Vitamin supplement 0 0 50 1 25 Artificial sweetener 0 120 0 2 15 Thickening agent 30 80 2 25 6 This beverage has the following requirements Total calories between 380 and 420. No more than 20% of total calories from fat. At least 50 mg vitamin. At least 2 tbsp of strawberry flavoring for each 1 tbsp of artificial sweetener. Exactly 15 mg thickeners. Formulate the problem to minimize costs.
8
Decision variables Decision Variables X 1 : tbsp of strawberry X 2 : tbsp of cream X 3 : tbsp of vitamin X 4 : tbsp of Artificial sweetener X 5 : tbsp of thickening
9
Constraints Calories 50X1 + 100 X2 + 120 X4 + 80 X5 380 50X1 + 100 X2 + 120 X4 + 80 X5 420 Calories from fat X1 + 75 X2 + 30 X5 .2(50X1 + 100 X2 + 120 X4 + 80 X5) Vitamin 20X1 + 50 X3 + 2 X5 50 Strawberry and sweetener X 1 2 X 4 Thickeners 3X 1 + 8X 2 + X 3 + 2 X 4 + 2.5 X 5 = 15 Objective Function Min Z = 10X 1 + 8X 2 + 25 X 3 + 15 X 4 + 6 X 5 Non-negativity X 1, X 2, X 3, X 4, X 5 0
10
Agricultural planning : narrative Three farming communities are developing a joint agricultural production plan for the coming year. Production capacity of each community is limited by their land and water. CommunityLand (Acres)Water (Acres Feet) 1400600 2600800 3300375 The crops suited for this region include sugar beets, cotton, and sorghum. These are the three being considered for the next year. Information regarding the maximum desired production of each product, water consumption, and net profit are given below
11
Agricultural planning : narrative Crop Max desired Water consumptionNet return (Acres) (Acre feet / Acre)($/Acre) 1600 31000 2500 2750 3325 1250 Because of the limited available water, it has been agreed that every community will plant the same proportion of its available irritable land. For example, if community 1 plants 200 of its available 400 acres, then communities 2 and 3 should plant 300 out of 600, and 150 out of 300 acres respectively. However, any combination of crops may be grown at any community. Goal : find the optimal combination of crops in each community, in order to maximize total return of all communities
12
Agricultural planning : decision variables x 11 = Acres allocated to Crop 1 in Community 1 x 21 = Acres allocated to Crop 2 in Community 1 x 31 = Acres allocated to Crop 3 in Community 1 x 12 = Acres allocated to Crop 1 in Community 2 x 22 = Acres allocated to Crop 2 in Community 2 x 32 = Acres allocated to Crop 3 in Community 2 …………….. x ij = Acres allocated to Crop i in Community j i for crop j for community, we could have switched them Note that x is volume not portion, we could have had it as portion
13
Agricultural planning : Formulation Land x 11 +x 21 +x 31 400 x 12 +x 22 +x 32 600 x 13 +x 23 +x 33 300 Water 3x 11 +2x 21 +1x 31 600 3x 12 +2x 22 +1x 32 800 3x 13 +2x 23 +1x 33 375
14
Agricultural planning : Formulation Crops x 11 + x 12 + x 13 600 x 21 +x 22 +x 23 500 x 31 +x 32 +x 33 320 Proportionality of land use x 11 +x 21 +x 31 x 12 +x 22 +x 32 400 600 x 11 +x 21 +x 31 x 13 +x 23 +x 33 400 300
15
Agricultural planning : Formulation Crops x 11 + x 12 + x 13 600 x 21 +x 22 +x 23 500 x 31 +x 32 +x 33 320 Proportionality of land use x 11 +x 21 +x 31 x 12 +x 22 +x 32 400 600 x 11 +x 21 +x 31 x 13 +x 23 +x 33 400 300
16
Agricultural planning : all variables on LHS Proportionality of land use 600(x 11 +x 21 +x 31 ) - 400(x 12 +x 22 +x 32 ) = 0 300(x 11 +x 21 +x 31 ) - 400(x 13 +x 23 +x 33 ) = 0 600x 11 + 600 x 21 + 600 x 31 - 400x 12 - 400 x 22 - 400 x 32 = 0 300x 11 + 300 x 21 + 300 x 31 - 400x 13 - 400 x 23 - 400 x 33 = 0 x 11, x 21,x 31, x 12, x 22, x 32, x 13, x 23, x 33 0
17
Controlling air pollution : narrative This is a good example to show that the statement of a problem could be complicated. But as soon as we define the correct decision variables, things become very clear Two sources of pollution: Open furnace and Blast furnace Three types of pollutants: Particulate matter, Sulfur oxides, and hydrocarbons. ( Pollutant1, Pollutant2, Pollutant3). Required reduction in these 3 pollutants are 60, 150, 125 million pounds per year. ( These are RHS) Three pollution reduction techniques: taller smokestacks, Filters, Better fuels. ( these are indeed our activities). We may implement a portion of full capacity of each technique. If we implement full capacity of each technique on each source, their impact on reduction of each type of pollutant is as follows
18
Controlling air pollution : narrative Pollutant Taller Filter Better fuel smokestacks B.F.O.FB.F.O.F.B.F.O.F. Particulate 12925201713 Sulfur 354218315649 Hydrocarb. 375328242920 The cost of implementing full capacity of each pollutant reduction technique on each source of pollution is as follows Pollutant Taller Filter Better fuel smokestacks B.F.O.FB.F.O.F.B.F.O.F. Cost 12 925201713
19
Controlling air pollution : Decision Variables How many techniques?? How many sources of pollution?? How many constraints do we have in this problem??? How many variables do we have Technique i source j
20
Controlling air pollution : Decision Variables x 11 = Proportion of technique 1 implemented of source 1 x 12 = Proportion of technique 1 implemented of source 2 x 21 = Proportion of technique 2 implemented of source 1. x 22 = Proportion of technique 2 implemented of source 2 x 31 = Proportion of technique 3 implemented of source 1 x 32 = Proportion of technique 3 implemented of source 2.
21
Controlling air pollution : Formulation Pollutant Taller Filter Better fuel smokestacks B.F.O.FB.F.O.F.B.F.O.F. Particulate 12925201713 Sulfur 354218315649 Hydrocarb. 375328242920 Min Z= 12x 11 +9x 12 + 25x 21 +20x 22 + 17x 31 +13x 32 Particulate; 12x 11 +9x 12 + 25x 21 +20x 22 + 17x 31 +13x 32 60 Sulfur; 35x 11 +42x 12 + 18x 21 +31x 22 + 56x 31 +49x 32 150 Hydrocarbon; 37x 11 +53x 12 + 28x 21 +24x 22 + 29x 31 +20x 32 125 x11, x12, x21, x22, x31, x32 ????
22
SAVE-IT Company : Narrative A reclamation center collects 4 types of solid waste material, treat them, then amalgamate them to produce 3 grades of product. Techno-economical specifications are given below Grade Specifications ProcessingSales price cost / pound/ pound M1 : 30% of total A M2 : 40% of total 38.5 M3 : 50% of total M4 : exactly 20% M1 : 50% of total B M2 : 10% of total2.57 M4 : exactly 10% C M1 : 70% of total25.5
23
SAVE-IT Company : Narrative Availability and cost of the solid waste materials M1, M2, M3, and M4 per week are given below MaterialPounds available / weekTreatment cost / pound M130003 M220006 M340004 M410005 Due to environmental considerations, a budget of $30000 / week should be used to treat these material. Furthermore, for each material, at least half of the pounds per week available should be collected and treated.
24
SAVE-IT Company : Narrative 1.Mixture Specifications 2.Availability of material 3.At least half of the material treated 4.Spend all the treatment budget 5.Maximize profit Z
25
Chapter 3 We are done with chapter 3. If you need more example, read the following slides. Also solve at least two problems ( among previous or later slides) using excel. If you need more reading; read sections 3.1 to 3.6 inclusive. That is pages 24-72. If you still need more problem, pickup one problem in each of the following pages. 91, 92,93,94,95,96, 97,98, 99, 100, 101, 102. Do not solve the excel part or software part of the problems you pick.
26
Capital budgeting : Narrative representation We are an investor, and there are 3 investment projects offered to the public. We may invest in any portion of one or more projects. Investment requirements of each project in each year ( in millions of dollars) is given below. The Net Present Value (NPV) of total cash flow is also given. YearProject 1Project 2Project 3 0408090 1608060 2908020 3107060 NPV457050
27
Capital budgeting : Narrative representation If we invest in 5% of project 1, then we need to invest 2, 3, 4.5, and 0.5 million dollars in years 0, 1, 2, 3 respectively. The NPV of our investment would be also equal to 5% of the NPV of this project, i.e. 2.25 million dollars. YearProject 15% of Project 1 0402 1603 2904.5 310.5 NPV452.25
28
Capital budgeting : Narrative representation Based on our budget forecasts, Our total available money to invest in year 0 is 25M. Our total available money to invest in years 0 and 1 is 45M Our total available money to invest in years 0, 1, 2 is 65M Our total available money to invest in years 0, 1, 2, 3 is 80M To clarify, in year 0 we can not invest more than 25M. In year 1 we can invest 45M minus what we have invested in year 0. The same is true for years 2 and 3. The objective is to maximize the NPV of our investments
29
proportion x 1 = proportion of project 1 invested by us. proportion x 2 = proportion of project 2 invested by us. proportion x 3 = proportion of project 3 invested by us. Maximize NPV Z = 45x 1 + 70 x 2 + 50 x 3 subject to Year 0 : 40 x 1 + 80 x 2 + 90 x 3 25 Year 1 : Investment in year 0 + Investment in year 1 45 Capital budgeting : Formulation
30
Investment in year 0 = 40 x 1 + 80 x 2 + 90 x 3 Investment in year 1 = 60 x 1 + 80 x 2 + 60 x 3 Year 1 : 60 x 1 + 80 x 2 + 60 x 3 + 40 x 1 + 80 x 2 + 90 x 3 45 Year 1 : 100x 1 + 160 x 2 + 150 x 3 45 Year 2 : 90x 1 + 80x 2 + 20 x 3 + 100x 1 + 160 x 2 + 150 x 3 65 Year 2 : 190x 1 + 240x 2 + 170 x 3 65 Year 3 : 10x 1 + 70x 2 + 60 x 3 + 190x 1 + 240x 2 + 170 x 3 80 Year 3 : 200x 1 + 310x 2 + 230 x 3 80 x 1, x 2, x 3 0. Capital budgeting : Formulation
31
An airline reservations office is open to take reservations by telephone 24 hours per day, Monday through Friday.The number of reservation officers needed for each time period is shown below. The union contract requires all employees to work 8 consecutive hours. Therefore, we have shifts of 12am-8am, 4am-12pm, 8am-4pm, 12pm-8pm, 4pm-12am, 8pm-4am. Hire the minimum number of reservation agents needed to cover all requirements. Personnel scheduling problem : Narrative representation PeriodRequirement 12am-4am11 4am-8am15 8am-12pm31 12pm-4pm17 4pm-8pm25 8pm-12am19
32
The union contract requires all employees to work 8 consecutive hours. We have shifts of 12am-8am, 4am-12pm, 8am-4pm, 12pm-8pm, 4pm-12am, 8pm-4am. Hire the minimum number of reservation agents needed to cover all requirements. If there were not restrictions of 8 hrs sifts, then we could hire as required, for example 11 workers for 4 hors and 15 workers for 4 hours. Personnel scheduling problem : Narrative representation
33
Personnel scheduling problem : Pictorial representation 12 am to 4 am 4 am to 8 am 8 am to 12 pm 12 pm to 4 pm 4 pm to 8 pm 8 pm to 12 am PeriodShift 123456 11 15 31 17 25 19
34
x 1 = Number of officers in 12 am to 8 am shift x 2 = Number of officers in 4 am to 12 pm shift x 3 = Number of officers in 8 am to 4 pm shift x 4 = Number of officers in 12 pm to 8 pm shift x 5 = Number of officers in 4 pm to 12 am shift x 6 = Number of officers in 8 pm to 4 am shift Personnel scheduling problem : Decision variables
35
Min Z = x 1 + x 2 + x 3 + x 4 + x 5 + x 6 12 am - 4 am : x 1 +x 6 11 4 am - 8 am : x 1 +x 2 15 8 am - 12 pm : +x 2 + x 3 31 12 pm - 4 pm : +x 3 + x 4 17 4 pm - 8 pm : +x 4 + x 5 25 8 pm - 12 am : +x 5 + x 6 19 x 1, x 2, x 3, x 4, x 5, x 6 0. Personnel problem : constraints and objective function
36
Personnel scheduling problem : excel solution
37
Aggregate Production Planning : Narrative PM Computer Services assembles its own brand of computers. Production capacity in regular time is 160 computer / week Production capacity in over time is 50 computer / week Assembly and inspection cost / computer is $190 in regular time and $260 in over time. Customer orders are as follows Week123456 Orders105170230180150250 It costs $10 / computer / week to produce a computer in one week and hold it in inventory for another week. The Goal is to satisfy customer orders at minimum cost.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.