Download presentation
Presentation is loading. Please wait.
Published byDuane Ray Modified over 9 years ago
1
Partially Coherent Ambiguity Functions for Depth-Variant Point Spread Function Design Roarke Horstmeyer 1 Se Baek Oh 2 Otkrist Gupta 1 Ramesh Raskar 1 PIERS Marrakesh, 3/20/11 1 MIT Media Lab 2 MIT Department of Mechanical Engineering
2
Conventional camera PSF measurement: Conventional PSF Blur defocus Circular Aperture I(z 0 )I(z 1 )I(z 2 ) z0z0 z1z1 z2z2 f Pt. Source Problem Statement
3
Design apertures for specific imaging tasks Determine mask Aperture mask: amplitude/phase defocus Desired set of PSFs I(z 0 ), I(z 1 ), I(z 2 ) z0z0 z1z1 z2z2 3 Problem Statement
4
Examples Defocus PSFs:Depth-InvariantRotatingArbitrary Cubic phase Gauss-Laguerre modes Iterative Design ?
5
PSF Design Similar to Phase Recovery d z0z0 z1z1 z2z2 Diffractive Element f z0z0 z1z1 z2z2 Aperture Element 3D PSF Design Measurement for phase recovery I(z 0 ), I(z 1 ), I(z 2 ) General Goal: Find (A, ϕ ) from multiple intensities (A,ϕ)(A,ϕ) (A,ϕ)(A,ϕ) Similar to Models: Fresnel propagation, k-space, light fields, phase space
6
I(x 1,z 1 )I(x 0,z 0 ) U(A, ϕ ) (a) Phase Retrieval iterative I(x n,z n ) I(x 0,z 0 ) … (c) Phase Space Tomography U(A, ϕ ) simultaneous I(x 1,z 1 )I(x 0,z 0 ) (d) Mode Selective (proposed) U(A, ϕ ) simultaneous iterative Overview of 3D Design Techniques I(x 1,z 1 )I(x 0,z 0 ) (b) Transport of Intensity U(A, ϕ ) simultaneous
7
I(x 1,z 1 )I(x 0,z 0 ) U(A, ϕ ) (a) Phase Retrieval iterative I(x n,z n ) I(x 0,z 0 ) … (c) Phase Space Tomography U(A, ϕ ) simultaneous I(x 1,z 1 )I(x 0,z 0 ) U(A, ϕ ) simultaneous iterative I(x 1,z 1 )I(x 0,z 0 ) U(A, ϕ ) simultaneous Phase space extends nicely to partially coherent design (b) Transport of Intensity Overview of 3D Design Techniques (d) Mode Selective (proposed)
8
Phase Space Functions Wigner Distribution (WDF) Ambiguity Function (AF) AF “easier” than WDF Tu, Tamura, Phys. Rev. E 55, 1997 OTF(z 1 ) OTF(z 0 ) OTF(-z 1 ) F-slice PSF(z 0 ) PSF(-z 1 ) PSF(z 1 ) WDF Projections: PSFs x u u x' AF Slices: OTFs
9
z0z0 z1z1 f x U(x) Phase Space Camera Model r Δz z0z0 I xʹxʹ I xʹxʹ z1z1 OTFs Aperture mask
10
z0z0 z1z1 f x U(x) tan(θ 0 )=0 u xʹxʹ Phase Space Camera Model Why AF is useful: z0z0 I xʹxʹ I xʹxʹ z1z1 tan(θ 1 )=(W 20 k/π) OTFs r Δz 1. Polar display of the OTF z0z0 z1z1 Aperture mask
11
z0z0 z1z1 f x U(x) tan(θ 0 )=0 u xʹxʹ Phase Space Camera Model Why AF is useful: z0z0 I xʹxʹ I xʹxʹ z1z1 tan(θ 1 )=(W 20 k/π) OTFs r Δz 2. Convert AF to Mutual Intensity: inverse FT, 45° rotation, scale by 2 3. Recovery of U(x) from AF (up to constant Δ ϕ ) z0z0 z1z1 1. Polar display of the OTF
12
OTF(z 1 ) OTF(z 0 ) PSF OTF Inputs Output: Desired Aperture Mask, 1D (1) AF Population (2) One-time AF Interpolation OTF(z 2 ) θnθn (5) Optimized AF xʹxʹ xʹxʹ u 1 0 xʹxʹ u xʹxʹ u x2x2 x1x1 x1x1 x2x2 (3) Mutual Intensity J Rank Constraint (4) Optimized J Error Check 1 0 1 0 Iterate &
13
Rank-constraint on Mutual Intensity, J = λ 1 + λ 2 +…+ λ 3 x1x1 x2x2 x1x1 x2x2 Represent J with coherent mode decomposition 1 Coherent, orthogonal modes from singular value decomposition J = UΛV T = Σ λ i U i (x 1 )U i * (x 2 ) Imperfect J guess: Many coherent modes Assume: J symmetric, nxn λ i = Singluar Values U i orthogonal to U j for all i≠j i=1 n J 1 E. Wolf, JOSA 72 (3), 1982
14
= λ 1 + λ 2 +…+ λ 3 1 st Mode: Coherent x1x1 x2x2 x1x1 x2x2 PSF = response to a point source: restricted to 1 mode Rank-constraint on Mutual Intensity, J J est = λ 1 U 1 (x 1 )U 1 * (x 2 ) J Represent J with coherent mode decomposition 1 Coherent, orthogonal modes from singular value decomposition 1 E. Wolf, JOSA 72 (3), 1982
15
Ground Truth AFReconstructed AF Computed Phase Mask Ground Truth and Reconstructed OTFs W 20 =0W 20 =λ/2W 20 =λ -π-π +π+π xʹxʹ u xʹxʹ xʹxʹ xʹxʹ xʹxʹ u Reconstruction Example: Cubic Phase Mask Example aperture mask function: exp(jαx 3 ), α=40, 20 iterations
16
Simulation Experiment Amplitude One (fixed) mask Simple Example: Arbitrary Input Input z 1 =50mm z 2 =50.1mm Rank-1 constraint 25μ – resolution, 1cm 2 binary mask in 50mm f/1.8 Nikkor, 200μ pinhole @ z=4m z 3 =50.2mm 50μ
17
-π-π +π+π No Constraints on (A, ϕ ) Phase (rad.) x (cm) Amplitude (AU) Amplitude-only constraint Phase-only constraint Constrained Decompositions In Experiment: Amplitude-only or Phase-only required MSE vs. # iterations MSE # of iterations Aperture mask constraints: -Varied performance -Algorithm still converges
18
Keeping More than One Mode = λ 1 + λ 2 +…+ λ 3 Several Modes: Partially Coherent x1x1 x2x2 x1x1 x2x2 -More accurate estimate found with n > 1 modes J n = 3: (J - Σ λ i U i (x 1 )U i (x 2 )) 2 = global minimum Eckert-Young Thm.: 1 st n-modes of SVD(J) = optimal rank-n estimate SVD = Optimal estimate (L 2 norm, no prior knowledge) i=1 3
19
Simulating Partial Coherence = λ 1 + λ 2 +…+ λ 3 x1x1 x2x2 x1x1 x2x2 -More accurate estimate found with n > 1 modes Multiple modes can be multiplexed over time 1,2 J Several Modes: Partially Coherent 1 P. De Santis, JOSA 3 (8), 1986, 2 Z. Zhang, private communication, 2011 Spatial Light Modulator: Vary over time CPU
20
Simulation Example: Benefit of Several Modes Input MSE improvement ~100x (modes contain both A and ϕ ) 12 3 Display 3 Optimal masks z 1 =50mm z 2 =50.1mm z 3 =50.2mm 50μ 1cm 2 masks Rank-3 constraint Experimentally: A, ϕ over time = hard “Weights”: 1 - 1 2 -.61 3 -.38
21
Adding a Constraint to Several Modes SVD & constrain in separate operations: No convergence = μ 1 + μ 2 +μ3+μ3 x1x1 x2x2 On(J)On(J) x1x1 x2x2 General solution: convex optimization e.g.: amplitude-only, phase-only, spatial 1 and coherence constraints min || J – Σ μ i W i W i * || 2 subject to constraints on W, given n i=1 n 1 Flewett et al., Optics Letters 34 (14) 2010 W 1 =?W 2 =?W 3 =? Operation O n (J) = find closest n rank-1 outer-products, constrained
22
Example Constraint: Amplitude-only Problem: n optimal coherent modes that are real, positive min || J – WW T || 2 W ≥ 0, real (J = kxk, W=kxn)
23
Example Constraint: Amplitude-only Problem: n optimal coherent modes that are real, positive min || J – WW T || 2 W ≥ 0, real (J = kxk, W=kxn) Solution: Non-negative matrix factorization 1 -e.g. Netflix challenge: low-rank rep. of 0-5 star movie scores Symmetric NMF: add to update rules (solve for W &H, W≈H) Note: Optimal “Coherent modes” are no longer orthogonal Update Rules: Add line 1 δ=tiny value, error ~2-5% 1. H=W T 2. W=W.*(H T J)./((HH T )H+δ) 3. H=H.*(W T J) T./H(WW)+δ) 1 Lee and Seung, Nature 401, 2001
24
A Simple Example: Multiple Amplitude Modes 12 3 1cm 2 masks Amplitude-only, 3 masks Amp-only masks: Sym. NMF “Weights”: 1 - 1 2 -.78 3 -.08 Simulation Input MSE improvement ~7x (vs. 1 Amp. mode) Buildup of a baseline bias… z 1 =50mm z 2 =50.1mm z 3 =50.2mm 50μ
25
Conclusion & Future Work -Phase space functions = intuitive window into 3D PSF design -Multiple modes (partially coherent) = increased flexibility -Constrained searches can be achieved w/ convex methods -Amplitude-only: Symmetric NMF -Other constraints: Phase-only (another convex implementation), coherence length (weighted SVD) -Subtracting modes: J=U 1 U 1 * ± U 2 U 2 * ±… (take 2 images) -Current: Initial Experimental tests using an SLM -Next Step: Find a nice application Thanks! Questions?
26
J pc (x 1,x 2 ) AF pc (x',u) x 1 (cm) x2x2 u.5 3 Coherent Modes 1cm Mask x'(cm -1 ) 5e4-5e4 -.5.5 -.5 x(cm) u x2x2 Partially Coherent Reconstruction: 3 Modes x 1 (cm).5 -.5 x'(cm -1 ) 5e4-5e4 Ground TruthReconstructed
27
Constraining Several Modes Apply Constraint: Amplitude-only, Phase-only, prior knowledge, etc. = λ 1 + λ 2 +… + λ 3 x1x1 x2x2 Sum=No longer optimal (localized constraints will not converge) individual constraint x1x1 x2x2 x1x1 x2x2 + λ 2 + λ 3 λ1λ1 SVD(J) amplitude-only Example: Amplitude-only mask individual constraint individual constraint
28
A Simple Example: Prior Knowledge A B C 3 modes hitting unknown structure (A=.4, B=.5, C=.7) + SVD(J) = 2 orthogonal modes x SVD(J) = x2x2 x1x1 Negative values = phase U 1 U 1 * ε (0,.9) U 2 U 2 * ε (-.1,.4)
29
A Simple Example: Prior Knowledge A B C 3 modes hitting unknown structure (A=.4, B=.5, C=.7) + SNMF(J) SVD(J) = 2 orthogonal modes = x x2x2 x1x1 Symmetric NMF: Assume no phase change - 3 modes>0, more info about structure ++ U 1 U 1 * ε (0,.47) U 2 U 2 * ε (0,.6) U 3 U 3 * ε (0,.6) Negative
30
Keeping More than One Mode = λ 1 + λ 2 +…+ λ 3 Several Modes: Partially Coherent x1x1 x2x2 x1x1 x2x2 -More accurate estimate with n>1 mutual intensity modes -J est = Σ J i AF est = Σ AF i = Σ L(J i ) 1,2 (L=linear transformation) -If J est more accurate, then AF est more accurate J Multiple Modes can be: a. Multiplexed over time (Desantis, Zheng) b. Could also multiplex over space and/or angle 1 M. Bastiaans, JOSA 3(8) 1986, 2 Lohmann and Rhodes, Appl. Opt. 17, 1978
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.