Presentation is loading. Please wait.

Presentation is loading. Please wait.

Chapter 1 Introduction to Electronics

Similar presentations


Presentation on theme: "Chapter 1 Introduction to Electronics"— Presentation transcript:

1 Chapter 1 Introduction to Electronics
Microelectronic Circuit Design Richard C. Jaeger Travis N. Blalock Modified by Ming Ouhyoung Microelectronic Circuit Design, 4E McGraw-Hill

2 Microelectronic Circuit Design, 4E McGraw-Hill
Chapter Goals Explore the history of electronics. Quantify the impact of integrated circuit technologies. Describe classification of electronic signals. Review circuit notation and theory. Introduce tolerance impacts and analysis. Describe problem solving approach Microelectronic Circuit Design, 4E McGraw-Hill

3 The Start of the Modern Electronics Era
Bardeen, Shockley, and Brattain at Bell Labs - Brattain and Bardeen invented the bipolar transistor in 1947. The first germanium bipolar transistor. Roughly 50 years later, electronics account for 10% (4 trillion dollars) of the world GDP. Microelectronic Circuit Design, 4E McGraw-Hill

4 Electronics Milestones
Braun invents the solid-state rectifier. DeForest invents triode vacuum tube. First radio circuits developed from diodes and triodes. 1925 Lilienfeld field-effect device patent filed. Bardeen and Brattain at Bell Laboratories invent bipolar transistors. Commercial bipolar transistor production at Texas Instruments. Bardeen, Brattain, and Shockley receive Nobel prize. Integrated circuits developed by Kilby and Noyce First commercial IC from Fairchild Semiconductor IEEE formed from merger of IRE and AIEE First commercial IC opamp One transistor DRAM cell invented by Dennard at IBM. 4004 Intel microprocessor introduced. First commercial 1-kilobit memory. microprocessor introduced. Megabit memory chip introduced. 2000 Alferov, Kilby, and Kromer share Nobel prize Microelectronic Circuit Design, 4E McGraw-Hill

5 Microelectronic Circuit Design, 4E McGraw-Hill
The Nobel Prize in Physics 2000 was awarded "for basic work on information and communication technology" with one half jointly to Zhores I. Alferov and Herbert Kroemer "for developing semiconductor heterostructures used in high-speed- and opto-electronics" and the other half to Jack S. Kilby "for his part in the invention of the integrated circuit“. Microelectronic Circuit Design, 4E McGraw-Hill

6 Evolution of Electronic Devices
Vacuum Tubes Discrete Transistors SSI and MSI Integrated Circuits VLSI Surface-Mount Circuits Microelectronic Circuit Design, 4E McGraw-Hill

7 Microelectronics Proliferation
The integrated circuit was invented in 1958. World transistor production has more than doubled every year for the past twenty years. Every year, more transistors are produced than in all previous years combined. Approximately 1018 transistors were produced in a recent year. Roughly 50 transistors for every ant in the world. *Source: Gordon Moore’s Plenary address at the 2003 International Solid State Circuits Conference. Microelectronic Circuit Design, 4E McGraw-Hill

8 Microelectronic Circuit Design, 4E McGraw-Hill
Device Feature Size Feature size reductions enabled by process innovations. Smaller features lead to more transistors per unit area and therefore higher density. Microelectronic Circuit Design, 4E McGraw-Hill

9 Rapid Increase in Density of Microelectronics
Memory chip density versus time. Microprocessor complexity versus time. Microelectronic Circuit Design, 4E McGraw-Hill

10 Microelectronic Circuit Design, 4E McGraw-Hill
Signal Types Analog signals take on continuous values - typically current or voltage. Digital signals appear at discrete levels. Usually we use binary signals which utilize only two levels. One level is referred to as logical 1 and logical 0 is assigned to the other level. Microelectronic Circuit Design, 4E McGraw-Hill

11 Analog and Digital Signals
Analog signals are continuous in time and voltage or current. (Charge can also be used as a signal conveyor.) After digitization, the continuous analog signal becomes a set of discrete values, typically separated by fixed time intervals. Microelectronic Circuit Design, 4E McGraw-Hill

12 Digital-to-Analog (D/A) Conversion
For an n-bit D/A converter, the output voltage is expressed as: The smallest possible voltage change is known as the least significant bit or LSB. Microelectronic Circuit Design, 4E McGraw-Hill

13 Analog-to-Digital (A/D) Conversion
Analog input voltage vx is converted to the nearest n-bit number. For a four bit converter, 0 → vx input yields a 0000 → 1111 digital output. Output is approximation of input due to the limited resolution of the n-bit output. Error is expressed as: Microelectronic Circuit Design, 4E McGraw-Hill

14 A/D Converter Transfer Characteristic
Microelectronic Circuit Design, 4E McGraw-Hill

15 Notational Conventions
Total signal = DC bias + time varying signal Resistance and conductance - R and G with same subscripts will denote reciprocal quantities. Most convenient form will be used within expressions. Microelectronic Circuit Design, 4E McGraw-Hill

16 Problem-Solving Approach
Make a clear problem statement. List known information and given data. Define the unknowns required to solve the problem. List assumptions. Develop an approach to the solution. Perform the analysis based on the approach. Check the results and the assumptions. Has the problem been solved? Have all the unknowns been found? Is the math correct? Have the assumptions been satisfied? Evaluate the solution. Do the results satisfy reasonableness constraints? Are the values realizable? Use computer-aided analysis to verify hand analysis Microelectronic Circuit Design, 4E McGraw-Hill

17 What are Reasonable Numbers?
If the power supply is ± 10 V, a calculated DC bias value of 15 V (not within the range of the power supply voltages) is unreasonable. Generally, our bias current levels will be between 1 μ A and a few hundred milliamps. A calculated bias current of 3.2 amps is probably unreasonable and should be reexamined. Peak-to-peak ac voltages should be within the power supply voltage range. A calculated component value that is unrealistic should be rechecked. For example, a resistance equal to ohms. Given the inherent variations in most electronic components, three significant digits are adequate for representation of results. Three significant digits are used throughout the text. Microelectronic Circuit Design, 4E McGraw-Hill

18 Circuit Theory: Voltage Division (9/19)
and Applying KVL (Kirchhoff’s voltage law) to the loop, and Combining these yields the basic voltage division formula: Microelectronic Circuit Design, 4E McGraw-Hill

19 Circuit Theory: Voltage Division (cont.)
Using the derived equations with the indicated values, Design Note: Voltage division only applies when both resistors are carrying the same current. Microelectronic Circuit Design, 4E McGraw-Hill

20 Kirchhoff's voltage law (KVL)
The principle of conservation of energy implies that The directed sum of the electrical potential differences (voltage) around any closed circuit is zero. Microelectronic Circuit Design, 4E McGraw-Hill

21 Circuit Theory: Current Division
where and Combining and solving for vs, Combining these yields the basic current division formula: and Microelectronic Circuit Design, 4E McGraw-Hill

22 Circuit Theory: Current Division (cont.)
Using the derived equations with the indicated values, Design Note: Current division only applies when the same voltage appears across both resistors. Microelectronic Circuit Design, 4E McGraw-Hill

23 Kirchhoff's current law (KCL)
The principle of conservation of electric charge implies that: At any node (junction) in an electrical circuit, the sum of currents flowing into that node is equal to the sum of currents flowing out of that node. Microelectronic Circuit Design, 4E McGraw-Hill

24 Circuit Theory: Thévenin and Norton Equivalent Circuits
Microelectronic Circuit Design, 4E McGraw-Hill

25 Thévenin Equivalent Circuits (戴維寧等效電路)
The Thévenin-equivalent voltage is the voltage at the output terminals of the original circuit. Microelectronic Circuit Design, 4E McGraw-Hill

26 Thévenin Equivalent Circuits
The Thévenin-equivalent resistance is the resistance measured across points A and B "looking back" into the circuit. It is important to first replace all voltage- and current-sources with their internal resistances. For an ideal voltage source, this means replace the voltage source with a short circuit. For an ideal current source, this means replace the current source with an open circuit. Microelectronic Circuit Design, 4E McGraw-Hill

27 Circuit Theory: Find the Thévenin Equivalent Voltage
Problem: Find the Thévenin equivalent voltage at the output. Solution: Known Information and Given Data: Circuit topology and values in figure. Unknowns: Thévenin equivalent voltage vth. Approach: Voltage source vth is defined as the output voltage with no load. Assumptions: None. Analysis: Next slide… Microelectronic Circuit Design, 4E McGraw-Hill

28 Circuit Theory: Find the Thévenin Equivalent Voltage
Applying KCL at the output node, Current i1 can be written as: Combining the previous equations Microelectronic Circuit Design, 4E McGraw-Hill

29 Circuit Theory: Find the Thévenin Equivalent Voltage (cont.)
Using the given component values: and Microelectronic Circuit Design, 4E McGraw-Hill

30 Circuit Theory: Find the Thévenin Equivalent Resistance
Problem: Find the Thévenin equivalent resistance. Solution: Known Information and Given Data: Circuit topology and values in figure. Unknowns: Thévenin equivalent Resistance Rth. Approach: Find Rth as the output equivalent resistance with independent sources set to zero. Assumptions: None. Analysis: Next slide… Test voltage vx has been added to the previous circuit. Applying vx and solving for ix allows us to find the Thévenin resistance as vx/ix. Microelectronic Circuit Design, 4E McGraw-Hill

31 Circuit Theory: Find the Thévenin Equivalent Resistance (cont.)
Applying KCL, Microelectronic Circuit Design, 4E McGraw-Hill

32 Norton Equivalent Circuits
Calculate the output current, IAB, with a short circuit as the load. Microelectronic Circuit Design, 4E McGraw-Hill

33 Circuit Theory: Find the Norton Equivalent Circuit
Problem: Find the Norton equivalent circuit. Solution: Known Information and Given Data: Circuit topology and values in figure. Unknowns: Norton equivalent short circuit current in. Approach: Evaluate current through output short circuit. Assumptions: None. Analysis: Next slide… A short circuit has been applied across the output. The Norton current is the current flowing through the short circuit at the output. Microelectronic Circuit Design, 4E McGraw-Hill

34 Circuit Theory: Find the Norton Equivalent Circuit (cont.)
Applying KCL, Short circuit at the output causes zero current to flow through RS. Rth is equal to Rth found earlier. Microelectronic Circuit Design, 4E McGraw-Hill

35 Final Thévenin and Norton Circuits
Check of Results: Note that vth = inRth and this can be used to check the calculations: inRth=(2.55 mS)vi(282 ) = 0.719vi, accurate within round-off error. While the two circuits are identical in terms of voltages and currents at the output terminals, there is one difference between the two circuits. With no load connected, the Norton circuit still dissipates power! Microelectronic Circuit Design, 4E McGraw-Hill

36 Microelectronic Circuit Design, 4E McGraw-Hill
Ω ℧ The SI unit of electrical conductance is the siemens, also known as the mho (ohm spelled backwards, symbol is ℧); it is the reciprocal of resistance in ohms. Microelectronic Circuit Design, 4E McGraw-Hill

37 Frequency Spectrum of Electronic Signals
Non repetitive signals have continuous spectra often occupying a broad range of frequencies Fourier theory tells us that repetitive signals are composed of a set of sinusoidal signals with distinct amplitude, frequency, and phase. The set of sinusoidal signals is known as a Fourier series. The frequency spectrum of a signal is the amplitude and phase components of the signal versus frequency. Microelectronic Circuit Design, 4E McGraw-Hill

38 Frequencies of Some Common Signals
Audible sounds 20 Hz - 20 KHz Baseband TV MHz FM Radio MHz Television (Channels 2-6) MHz Television (Channels 7-13) MHz Maritime and Govt. Comm MHz Cell phones and other wireless MHz Satellite TV GHz Wireless Devices GHz Microelectronic Circuit Design, 4E McGraw-Hill

39 Microelectronic Circuit Design, 4E McGraw-Hill
Fourier Series Any periodic signal contains spectral components only at discrete frequencies related to the period of the original signal. A square wave is represented by the following Fourier series: 0=2/T (rad/s) is the fundamental radian frequency and f0=1/T (Hz) is the fundamental frequency of the signal. 2f0, 3f0, 4f0 and called the second, third, and fourth harmonic frequencies. Microelectronic Circuit Design, 4E McGraw-Hill

40 Microelectronic Circuit Design, 4E McGraw-Hill

41 Microelectronic Circuit Design, 4E McGraw-Hill

42 Microelectronic Circuit Design, 4E McGraw-Hill
Amplifier Basics Analog signals are typically manipulated with linear amplifiers. Although signals may be comprised of several different components, linearity permits us to use the superposition principle. Superposition allows us to calculate the effect of each of the different components of a signal individually and then add the individual contributions to the output. Microelectronic Circuit Design, 4E McGraw-Hill

43 Microelectronic Circuit Design, 4E McGraw-Hill
Amplifier Linearity Given an input sinusoid: For a linear amplifier, the output is at the same frequency, but different amplitude and phase. In phasor notation: Amplifier gain is: Microelectronic Circuit Design, 4E McGraw-Hill

44 Amplifier Input/Output Response
vi = sin2000t V Av = -5 Note: negative gain is equivalent to 180 degrees of phase shift. Microelectronic Circuit Design, 4E McGraw-Hill

45 Ideal Operational Amplifier (Op Amp)
Ideal op amps are assumed to have infinite voltage gain, and infinite input resistance. These conditions lead to two assumptions useful in analyzing ideal op-amp circuits: 1. The voltage difference across the input terminals is zero. 2. The input currents are zero. Microelectronic Circuit Design, 4E McGraw-Hill

46 Microelectronic Circuit Design, 4E McGraw-Hill
Ideal Op Amp Example Writing a loop equation: From assumption 2, we know that i- = 0. Assumption 1 requires v- = v+ = 0. Combining these equations yields: Assumption 1 requiring v- = v+ = 0 creates what is known as a virtual ground. Microelectronic Circuit Design, 4E McGraw-Hill

47 Ideal Op Amp Example (Alternative Approach)
From Assumption 2, i2 = ii: Yielding: Design Note: The virtual ground is not an actual ground. Do not short the inverting input to ground to simplify analysis. Microelectronic Circuit Design, 4E McGraw-Hill

48 Amplifier Frequency Response
Amplifiers can be designed to selectively amplify specific ranges of frequencies. Such an amplifier is known as a filter. Several filter types are shown below: Low Pass High Pass Band Pass Band Reject All Pass Microelectronic Circuit Design, 4E McGraw-Hill

49 Circuit Element Variations
All electronic components have manufacturing tolerances. Resistors can be purchased with  10%,  5%, and  1% tolerance. (IC resistors are often  10%.) Capacitors can have asymmetrical tolerances such as +20%/-50%. Power supply voltages typically vary from 1% to 10%. Device parameters will also vary with temperature and age. Circuits must be designed to accommodate these variations. We will use worst-case and Monte Carlo (statistical) analysis to examine the effects of component parameter variations. Microelectronic Circuit Design, 4E McGraw-Hill

50 Microelectronic Circuit Design, 4E McGraw-Hill
Tolerance Modeling For symmetrical parameter variations Pnom(1 - )  P  Pnom(1 + ) For example, a 10K resistor with 5% percent tolerance could take on the following range of values: 10k( )  R  10k( ) 9,500   R  10,500  Microelectronic Circuit Design, 4E McGraw-Hill

51 Circuit Analysis with Tolerances
Worst-case analysis Parameters are manipulated to produce the worst-case min and max values of desired quantities. This can lead to over design since the worst-case combination of parameters is rare. It may be less expensive to discard a rare failure than to design for 100% yield. Monte-Carlo analysis Parameters are randomly varied to generate a set of statistics for desired outputs. The design can be optimized so that failures due to parameter variation are less frequent than failures due to other mechanisms. In this way, the design difficulty is better managed than a worst-case approach. Microelectronic Circuit Design, 4E McGraw-Hill

52 Worst Case Analysis Example
Problem: Find the nominal and worst-case values for output voltage and source current. Solution: Known Information and Given Data: Circuit topology and values in figure. Unknowns: VOnom, VOmin , VOmax, IInom, IImin, IImax . Approach: Find nominal values and then select R1, R2, and VI values to generate extreme cases of the unknowns. Assumptions: None. Analysis: Next slides… Nominal voltage solution: Microelectronic Circuit Design, 4E McGraw-Hill

53 Worst-Case Analysis Example (cont.)
Nominal Source current: Rewrite VO to help us determine how to find the worst-case values. VO is maximized for max VI, R1 and min R2. VO is minimized for min VI, R1, and max R2. Microelectronic Circuit Design, 4E McGraw-Hill

54 Worst-Case Analysis Example (cont.)
Worst-case source currents: Check of Results: The worst-case values range from percent above and below the nominal values. The sum of the three element tolerances is 20 percent, so our calculated values appear to be reasonable. Microelectronic Circuit Design, 4E McGraw-Hill

55 Microelectronic Circuit Design, 4E McGraw-Hill
Monte Carlo Analysis Parameters are varied randomly and output statistics are gathered. We use programs like MATLAB, Mathcad, SPICE, or a spreadsheet to complete a statistically significant set of calculations. For example, a resistor with Epsilon ε% tolerance can be expressed as: The RAND() function returns random numbers uniformly distributed between 0 and 1. Microelectronic Circuit Design, 4E McGraw-Hill

56 Monte Carlo Analysis Result
WC WC Histogram of output voltage from 1000 case Monte Carlo simulation. Microelectronic Circuit Design, 4E McGraw-Hill

57 Monte Carlo Analysis Example
Problem: Perform a Monte Carlo analysis and find the mean, standard deviation, min, and max for VO, IS, and power delivered from the source. Solution: Known Information and Given Data: Circuit topology and values in figure. Unknowns: The mean, standard deviation, min, and max for VO, II, and PI. Approach: Use a spreadsheet to evaluate the circuit equations with random parameters. Assumptions: None. Analysis: Next slides… Monte Carlo parameter definitions: Microelectronic Circuit Design, 4E McGraw-Hill

58 Monte Carlo Analysis Example (cont.)
Monte Carlo parameter definitions: Circuit equations based on Monte Carlo parameters: Results: Avg Nom. Stdev Max WC-max Min WC-Min Vo (V) II (mA) P (mW) Microelectronic Circuit Design, 4E McGraw-Hill

59 Temperature Coefficients
Most circuit parameters are temperature sensitive. P = Pnom(1+1∆T+ 2∆T2) where ∆T = T-Tnom Pnom is defined at Tnom Most versions of SPICE allow for the specification of TNOM, T, TC1(1), TC2(2). SPICE temperature model for resistor: R(T) = R(TNOM)*[1+TC1*(T-TNOM)+TC2*(T-TNOM)2] Many other components have similar models. Microelectronic Circuit Design, 4E McGraw-Hill

60 Microelectronic Circuit Design, 4E McGraw-Hill
Numeric Precision Most circuit parameters vary from less than ± 1 % to greater than ± 50%. As a consequence, more than three significant digits is meaningless. Results in the text will be represented with three significant digits: mA, 5.72 V, µA, and so on. Microelectronic Circuit Design, 4E McGraw-Hill

61 Microelectronic Circuit Design, 4E McGraw-Hill
Homework Problems 1.24, 1.25 Microelectronic Circuit Design, 4E McGraw-Hill

62 Microelectronic Circuit Design, 4E McGraw-Hill
End of Chapter 1 Microelectronic Circuit Design, 4E McGraw-Hill


Download ppt "Chapter 1 Introduction to Electronics"

Similar presentations


Ads by Google