Presentation is loading. Please wait.

Presentation is loading. Please wait.

Www.geoinformatics.upol.cz On Shape Metrics in Landscape Analyses Vít PÁSZTO Department of Geoinformatics, Faculty of Science, Palacký University in Olomouc.

Similar presentations


Presentation on theme: "Www.geoinformatics.upol.cz On Shape Metrics in Landscape Analyses Vít PÁSZTO Department of Geoinformatics, Faculty of Science, Palacký University in Olomouc."— Presentation transcript:

1 www.geoinformatics.upol.cz On Shape Metrics in Landscape Analyses Vít PÁSZTO Department of Geoinformatics, Faculty of Science, Palacký University in Olomouc Reg. č.: CZ.1.07/2.3.00/20.0170

2 www.geoinformatics.upol.cz Presentation schedule Introduction Data used Study area Methods Case study 1 (Results) Case study 2 (Results) Case study 3 (Initial idea) Conclusions

3 www.geoinformatics.upol.cz Introduction Computer capabilities used by landscape ecologists Quantification of landscape patches Via various indexes and metrics Prerequisite to the study pattern-process relationships (McGarigal and Marks, 1995) Progress faciliated by recent advances in computer processing and GIT

4 www.geoinformatics.upol.cz Introduction Shape and spatial metrics are exactly those methods for quantitative description In combination with multivariate statistics, it is possible to evaluate, classify and cluster patches Available metrics were used (as many as possible) Unusual approach in CLC and city footprint analysis

5 www.geoinformatics.upol.cz Methods - Shape & spatial metrics Fundamentally based on patch area, perimeter and shape Easy-to-obtain metrics & complex metrics Software used: o FRAGSTATS 4.1 o Shape Metrics for ArcGIS for Desktop 10.x EXAMPLE/EXPLANATION

6 www.geoinformatics.upol.cz Methods - Shape & spatial metrics

7 www.geoinformatics.upol.cz Methods - Shape & spatial metrics

8 www.geoinformatics.upol.cz Methods - Shape & spatial metrics

9 www.geoinformatics.upol.cz Methods - Shape & spatial metrics

10 www.geoinformatics.upol.cz Methods - Shape & spatial metrics Convex hull Detour index

11 www.geoinformatics.upol.cz Case study 1 - Data Freely available CORINE Land Cover dataset: o 1990 o 2000 o 2006 Level 1 of CLC - 5 classes: o Artificial surfaces o Agricultural areas o Forest and semi-natural areas o Wetlands o Water bodies

12 www.geoinformatics.upol.cz Case study 1 - Study area Olomouc region (800 km 2 ) - 1/2 of London More than 944 patches analyzed

13 www.geoinformatics.upol.cz Case study 1 - Methods Principal Component Analysis (PCA) for consequent clustering Cluster analysis: o DIvisive ANAlysis clustering (DIANA) o Partitioning Around Medoids (PAM) Software - Rstudio environment using R programming language

14 www.geoinformatics.upol.cz Case study 1 - Workflow Diagram CLC (1990, 2000, 2006) Metrics calculation PCAClustering DIANA PAM

15 www.geoinformatics.upol.cz Case study 1 – no. of clusters

16 www.geoinformatics.upol.cz Results – DIANA clustering Hierarchichal clustering Tree structured dendrogram One starting cluster divided until each cluster contains one single object

17 www.geoinformatics.upol.cz Results – DIANA clustering

18 www.geoinformatics.upol.cz Results – Diana clustering

19 www.geoinformatics.upol.cz Results – PAM clustering Non-hierarchichal clustering „Scatterplot“ groups Using medoids Similar to K-means More robust than K- means

20 www.geoinformatics.upol.cz Results – PAM clustering

21 www.geoinformatics.upol.cz Results – PAM clustering

22 www.geoinformatics.upol.cz Case study 2 - Data Urban Atlas: o Year 2006 o Only Artificial surfaces o Digitized to have urban footprints o All EU member states capital cities

23 www.geoinformatics.upol.cz Case study 2

24 www.geoinformatics.upol.cz Fractal Dimension Index Bruxelles (1.0694) Vienna (1.1505) Cohesion Index Bruxelles (0,948875) Tallin (0,636262) Results

25 www.geoinformatics.upol.cz Results Elbow diagram (no. of clusters):

26 www.geoinformatics.upol.cz Results – DIANA clustering

27 www.geoinformatics.upol.cz Results – PAM clustering

28 www.geoinformatics.upol.cz Results

29 www.geoinformatics.upol.cz An idea (to be done) Church of st. Maurice Case study 3 – what about cartography

30 www.geoinformatics.upol.cz Case study 3 – what about cartography

31 www.geoinformatics.upol.cz Case study 3 – what about cartography

32 www.geoinformatics.upol.cz Conclusions & Discussion Shape Metrics are useful from quantitative point of view Tool for (semi)automatic shape recognition via clustering Double-edged and difficult interpretation Strongly purpose-oriented Geographical context is needed Input data (raster&vector) sensitivity

33 www.geoinformatics.upol.cz Conclusions & Discussion Not many reference studies to validate the results Shape metrics correlations There is no consensus about shape metrics use among the scientists Proximity and Cohesion index – for centrality analysis Fractal dimension, Perim-area, Shape Index – for line complexity evaluation

34 www.geoinformatics.upol.cz The End Vít PÁSZTO vit.paszto@gmail.com On Shape Metrics in Landscape Analyses


Download ppt "Www.geoinformatics.upol.cz On Shape Metrics in Landscape Analyses Vít PÁSZTO Department of Geoinformatics, Faculty of Science, Palacký University in Olomouc."

Similar presentations


Ads by Google