Download presentation
Presentation is loading. Please wait.
Published byElaine Parsons Modified over 9 years ago
1
www.geoinformatics.upol.cz On Shape Metrics in Landscape Analyses Vít PÁSZTO Department of Geoinformatics, Faculty of Science, Palacký University in Olomouc Reg. č.: CZ.1.07/2.3.00/20.0170
2
www.geoinformatics.upol.cz Presentation schedule Introduction Data used Study area Methods Case study 1 (Results) Case study 2 (Results) Case study 3 (Initial idea) Conclusions
3
www.geoinformatics.upol.cz Introduction Computer capabilities used by landscape ecologists Quantification of landscape patches Via various indexes and metrics Prerequisite to the study pattern-process relationships (McGarigal and Marks, 1995) Progress faciliated by recent advances in computer processing and GIT
4
www.geoinformatics.upol.cz Introduction Shape and spatial metrics are exactly those methods for quantitative description In combination with multivariate statistics, it is possible to evaluate, classify and cluster patches Available metrics were used (as many as possible) Unusual approach in CLC and city footprint analysis
5
www.geoinformatics.upol.cz Methods - Shape & spatial metrics Fundamentally based on patch area, perimeter and shape Easy-to-obtain metrics & complex metrics Software used: o FRAGSTATS 4.1 o Shape Metrics for ArcGIS for Desktop 10.x EXAMPLE/EXPLANATION
6
www.geoinformatics.upol.cz Methods - Shape & spatial metrics
7
www.geoinformatics.upol.cz Methods - Shape & spatial metrics
8
www.geoinformatics.upol.cz Methods - Shape & spatial metrics
9
www.geoinformatics.upol.cz Methods - Shape & spatial metrics
10
www.geoinformatics.upol.cz Methods - Shape & spatial metrics Convex hull Detour index
11
www.geoinformatics.upol.cz Case study 1 - Data Freely available CORINE Land Cover dataset: o 1990 o 2000 o 2006 Level 1 of CLC - 5 classes: o Artificial surfaces o Agricultural areas o Forest and semi-natural areas o Wetlands o Water bodies
12
www.geoinformatics.upol.cz Case study 1 - Study area Olomouc region (800 km 2 ) - 1/2 of London More than 944 patches analyzed
13
www.geoinformatics.upol.cz Case study 1 - Methods Principal Component Analysis (PCA) for consequent clustering Cluster analysis: o DIvisive ANAlysis clustering (DIANA) o Partitioning Around Medoids (PAM) Software - Rstudio environment using R programming language
14
www.geoinformatics.upol.cz Case study 1 - Workflow Diagram CLC (1990, 2000, 2006) Metrics calculation PCAClustering DIANA PAM
15
www.geoinformatics.upol.cz Case study 1 – no. of clusters
16
www.geoinformatics.upol.cz Results – DIANA clustering Hierarchichal clustering Tree structured dendrogram One starting cluster divided until each cluster contains one single object
17
www.geoinformatics.upol.cz Results – DIANA clustering
18
www.geoinformatics.upol.cz Results – Diana clustering
19
www.geoinformatics.upol.cz Results – PAM clustering Non-hierarchichal clustering „Scatterplot“ groups Using medoids Similar to K-means More robust than K- means
20
www.geoinformatics.upol.cz Results – PAM clustering
21
www.geoinformatics.upol.cz Results – PAM clustering
22
www.geoinformatics.upol.cz Case study 2 - Data Urban Atlas: o Year 2006 o Only Artificial surfaces o Digitized to have urban footprints o All EU member states capital cities
23
www.geoinformatics.upol.cz Case study 2
24
www.geoinformatics.upol.cz Fractal Dimension Index Bruxelles (1.0694) Vienna (1.1505) Cohesion Index Bruxelles (0,948875) Tallin (0,636262) Results
25
www.geoinformatics.upol.cz Results Elbow diagram (no. of clusters):
26
www.geoinformatics.upol.cz Results – DIANA clustering
27
www.geoinformatics.upol.cz Results – PAM clustering
28
www.geoinformatics.upol.cz Results
29
www.geoinformatics.upol.cz An idea (to be done) Church of st. Maurice Case study 3 – what about cartography
30
www.geoinformatics.upol.cz Case study 3 – what about cartography
31
www.geoinformatics.upol.cz Case study 3 – what about cartography
32
www.geoinformatics.upol.cz Conclusions & Discussion Shape Metrics are useful from quantitative point of view Tool for (semi)automatic shape recognition via clustering Double-edged and difficult interpretation Strongly purpose-oriented Geographical context is needed Input data (raster&vector) sensitivity
33
www.geoinformatics.upol.cz Conclusions & Discussion Not many reference studies to validate the results Shape metrics correlations There is no consensus about shape metrics use among the scientists Proximity and Cohesion index – for centrality analysis Fractal dimension, Perim-area, Shape Index – for line complexity evaluation
34
www.geoinformatics.upol.cz The End Vít PÁSZTO vit.paszto@gmail.com On Shape Metrics in Landscape Analyses
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.