Download presentation
1
Geometric Camera Models and Camera Calibration
Computer Vision Geometric Camera Models and Camera Calibration
2
Coordinate Systems Let O be the origin of a 3D coordinate system spanned by the unit vectors i, j, and k orthogonal to each other. i P O k j Coordinate vector Bahadir K. Gunturk
3
Homogeneous Coordinates
P O Homogeneous coordinates Bahadir K. Gunturk
4
Coordinate System Changes
Translation Bahadir K. Gunturk
5
Coordinate System Changes
Rotation where Exercise: Write the rotation matrix for a 2D coordinate system. Bahadir K. Gunturk
6
Coordinate System Changes
Rotation + Translation In homogeneous coordinates Rigid transformation matrix Bahadir K. Gunturk
7
Perspective Projection
Perspective projection equations Bahadir K. Gunturk
8
Intrinsic Camera Parameters
Perspective projection Bahadir K. Gunturk
9
Intrinsic Camera Parameters
We need take into account the dimensions of the pixels. CCD sensor array Bahadir K. Gunturk
10
Intrinsic Camera Parameters
The center of the sensor chip may not coincide with the pinhole center. Bahadir K. Gunturk
11
Intrinsic Camera Parameters
The camera coordinate system may be skewed due to some manufacturing error. Bahadir K. Gunturk
12
Intrinsic Camera Parameters
In homogeneous coordinates These five parameters are known as intrinsic parameters Bahadir K. Gunturk
13
Intrinsic Camera Parameters
In a simpler notation: With respect to the camera coordinate system Bahadir K. Gunturk
14
Extrinsic Camera Parameters
Translation and rotation of the camera frame with respect to the world frame In homogeneous coordinates Using , we get Bahadir K. Gunturk
15
Combine Intrinsic & Extrinsic Parameters
We can further simplify to 3x4 matrix with 11 degrees of freedom: 5 intrinsic, 3 rotation, and 3 translation parameters. Bahadir K. Gunturk
16
Camera Calibration Camera’s intrinsic and extrinsic parameters are found using a setup with known positions in some fixed world coordinate system. Bahadir K. Gunturk
17
Camera Calibration Y Z X courtesy of B. Wilburn Bahadir K. Gunturk
18
Camera Calibration Mathematically, we are given n points
We want to find M and where Bahadir K. Gunturk
19
Camera Calibration We can write Bahadir K. Gunturk
20
Camera Calibration Scale and subtract last row from first and second rows to get Bahadir K. Gunturk
21
Camera Calibration Write in matrix form for n points to get
Let m34=1; that is, scale the projection matrix by m34. Bahadir K. Gunturk
22
Camera Calibration The least square solution of is
From the matrix M, we can find the intrinsic and extrinsic parameters. Bahadir K. Gunturk
23
Camera Calibration Consider the case where skew angle is 90. Since we set m34=1, we need to take that into account at the end. Notice that Since R is a rotation matrix, Therefore, Bahadir K. Gunturk
24
Camera Calibration We get
See Forsyth & Ponce for details and skew-angle case. Bahadir K. Gunturk
25
Applications courtesy of Sportvision First-down line
Bahadir K. Gunturk
26
Applications courtesy of Princeton Video Image Virtual advertising
Bahadir K. Gunturk
27
Parameters of a Stereo System
l r P Ol Or Xl Xr Pl Pr fl fr Zl Yl Zr Yr R, T Intrinsic Parameters Characterize the transformation from camera to pixel coordinate systems of each camera Focal length, image center, aspect ratio Extrinsic parameters Describe the relative position and orientation of the two cameras Rotation matrix R and translation vector T Bahadir K. Gunturk
28
Calibrated Camera Essential matrix Bahadir K. Gunturk
29
Uncalibrated Camera Fundamental matrix Bahadir K. Gunturk
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.