Download presentation
Presentation is loading. Please wait.
Published byJustin Walters Modified over 9 years ago
1
Strongly interacting scale-free matter in cold atoms Yusuke Nishida March 12, 2009 @ MIT Faculty Lunch
2
2/32 Fermions at infinite scattering length
3
3/32 Interacting Fermion systems AttractionSuperconductivity / Superfluidity Metallic superconductivity (electrons) Kamerlingh Onnes (1911), T c ~4.2 K Liquid 3 He Lee, Osheroff, Richardson (1972), T c ~2 mK High-T c superconductivity (electrons or holes) Bednorz and Müller (1986), T c ~100 K Cold atomic gases ( 40 K, 6 Li) Regal, Greiner, Jin (2003), T c ~ 50 nK Nuclear matter (neutron stars): T c ~ 1 MeV ? Color superconductivity (quarks): T c ~ 100 MeV ?? Neutrino superfluidity ??? BCS theory (1957)
4
4/32 r Feshbach resonance S-wave scattering length : E interatomic potential bound level E= B 40 K C.A.Regal and D.S.Jin, Phys.Rev.Lett. (2003)
5
5/32 40 K S-wave scattering length : a (Gauss) a Weak attraction a<0 Strong attraction a>0 bound molecule zero binding energy : |a| Attraction is arbitrarily tunable by magnetic field r (r) r V0V0 r0r0 a <0 |a| a >0
6
6/32 strong attraction BCS-BEC crossover 0 weak attraction Eagles (1969), Leggett (1980) Nozières and Schmitt-Rink (1985) superfluid phase B (gauss) scattering length : a BEC of molecules BCS state of atoms k F = (3 n) 1/3 Fermi momentum
7
7/32 strong attraction BEC of molecules BCS-BEC crossover 0 weak attraction BCS state of atoms Eagles (1969), Leggett (1980) Nozières and Schmitt-Rink (1985) superfluid phase M. Zwierlein et al. Nature (2005) Vortex lattices throughout BCS- BEC crossover 880 m
8
8/32 BCS-BEC crossover a dd =0.6 a Bose gas with weak repulsion ak F << 1 Fermi gas with weak attraction |ak F | << 1 Eagles (1969), Leggett (1980) Nozières and Schmitt-Rink (1985) strong attraction BEC of molecules weak attraction BCS state of atoms 0 Strong interaction |ak F | >> 1
9
9/32 Unitary Fermi gas 0 weak BCS weak BEC strong interaction 40 K S-wave scattering length : a B (Gauss) |ak F |
10
10/32 Strong coupling limit : |ak F | Maximal s-wave cross section Unitarity limit No perturbative expansion Challenge for theorists Scale invariant interaction a & zero range r 0 0 Nonrelativistic CFT Universality Atomic gas @ Feshbach resonance Dilute neutron matter : |a NN | ~ 19 fm >> r 0 ~ 1 fm Unitary Fermi gas 0 weak BCS weak BEC strong interaction expansion !
11
11/32 d=4 d=2 New approach from d≠3 Strong coupling Unitary regime g d 4 : Weakly-interacting fermions & bosons with small coupling g 2 ~(4-d) d 2 : Weakly-interacting fermions with small coupling g~(d-2) Systematic expansions for various physical observables in terms of “ 4-d” or “d-2” weak BECweak BCS 0 g
12
12/32 expansion
13
13/32 Scale invariant interaction r (r) V0V0 r0r0 rr V 0 ~ 1/(m r 0 2 ) Atomic gas @ Feshbach resonance : 0 r 0 << k F -1 << a spin-1/2 fermions interacting via a zero-range & infinite scattering length contact interaction r (r) r
14
14/32 Specialty of d=2 & 4 Z.Nussinov and S.Nussinov, cond-mat/0410597 4 2 3 d 2-body wave function in general dimensions “a ” corresponds to zero interaction Fermions at unitarity in d 2 are free fermions Wave function (r) becomes smooth at r 0 for d=2 ( Any attractive potential in d=2 leads to bound states )
15
15/32 Specialty of d=2 & 4 Z.Nussinov and S.Nussinov, cond-mat/0410597 4 2 3 d 2-body wave function in general dimensions Pair wave function is concentrated near its origin Fermions at unitarity in d 4 are free bosons Normalization diverges at r 0 for d=4
16
16/32 Ground state energy Ground state energy of unitary Fermi gas at T=0 Density “N” is the only scale : fundamental quantity of unitary Fermi gas Mean field approx., Engelbrecht et al. (1996): <0.59 Simulations Experiments Innsbruck(’04): 0.32(13), Duke(’05): 0.51(4), Rice(’05): 0.46(5), JILA(’06): 0.46(12), ENS(’07): 0.41(15) Carlson et al., Phys.Rev.Lett. (2003): =0.44(1) Astrakharchik et al., Phys.Rev.Lett. (2004): =0.42(1) Carlson and Reddy, Phys.Rev.Lett. (2005): =0.42(1)
17
17/32 Ground state energy in d = 2 & 4 Ground state energy of unitary Fermi gas 4 2 3 d Unitary Fermi gas in d 4 is a free Bose gas Unitary Fermi gas in d 2 is a free Fermi gas in d=3 !? J.Carlson and S.Reddy (2005) Cf. MC simulation in 3d
18
18/32 Ground state energy in d = 2 & 4 Ground state energy of unitary Fermi gas 4 2 3 d Unitary Fermi gas in d 4 is a free Bose gas Unitary Fermi gas in d 2 is a free Fermi gas d=4 & d=2 are starting points for systematic expansions of
19
19/32 T-matrix in general dimensions Field theoretical approach iT = (p 0,p) 1 n “a ” Scattering amplitude has zeros at d=2,4,… Non-interacting limits Spin-1/2 fermions with contact interaction : 2-body scattering at vacuum ( =0) Y.N. and D.T.Son PRL(’06) & PRA(’07)
20
20/32 When d=4- ( <<1) Field theoretical approach 4 2 3 d iT = ig iD( p 0,p ) Small coupling between fermions & boson g = (8 2 ) 1/2 /m T-matrix in general dimensions Y.N. and D.T.Son PRL(’06) & PRA(’07)
21
21/32 Field theoretical approach 4 2 3 d iT = ig Small coupling between fermion & fermion g = 2 /m When d=2+ ( <<1) T-matrix in general dimensions Y.N. and D.T.Son PRL(’06) & PRA(’07)
22
22/32 g fermions with small coupling g~(d-2) << 1 Systematic expansions 4 2 3 d O(1) O( ) + + P ( ) = + O( 2 ) fermions & bosons with small coupling g 2 ~(4-d) << 1 g =4-d & =d-2
23
23/32 Systematic expansions 4 2 3 d Carlson & Reddy (2005) Cf. MC simulation in 3d NLO correction is small ~5 % g fermions & bosons with small coupling g 2 ~(4-d) << 1 fermions with small coupling g~(d-2) << 1 g O(1) O( ) + P ( ) = + O( 2 ) =4-d & =d-2
24
24/32 Systematic expansions 4 2 3 d g fermions & bosons with small coupling g 2 ~(4-d) << 1 fermions with small coupling g~(d-2) << 1 Carlson & Reddy (2005) Cf. MC simulation in 3d g NLO correction is small ~5 % =4-d & =d-2
25
25/32 d ♦=0.42 4d 2d Matching of two expansions in Padé approximants ( + Borel transformation) Interpolations to 3d free Fermi gas free Bose gas = E unitary / E free
26
26/32 d Tc / FTc / F 4d 2d Critical temperature Critical temperature from d=4 and 2 Monte Carlo simulations Bulgac et al. (’05): T c / F = 0.23(2) Lee and Schäfer (’05): T c / F < 0.14 Burovski et al. (’06): T c / F = 0.152(7) Akkineni et al. (’06): T c / F 0.25 Interpolated results to d=3 Y.N., Phys. Rev. A (2007) free Fermi gas free Bose gas
27
27/32 Few body aspects
28
28/32 Correspondence Schrödinger equation in free space with E=0 Scaling solution Schrödinger equation in a harmonic potential S.Tan, cond-mat/0412764 F.Werner & Y.Castin, PRA (2006) Y.N. & D.T.Son, PRD (2007) = anomalous dimension of operator in nonrelativistic CFT
29
29/32 3 fermions in a harmonic potential 2d 4d Angular momentum l = 0 Angular momentum l = 1
30
30/32 3 fermions in a harmonic potential 2d 4d Angular momentum l = 0 Angular momentum l = 1
31
31/32 Summary Fermi gas at infinite scattering length = New strongly interacting matter in cold atoms Unitary Fermi gas around d=4 becomes weakly-interacting system of fermions & bosons Weakly-interacting system of fermions around d=2 Thermodynamics & Quasiparticle spectrum (Y.N. & D.T.Son 2006) Atom-dimer & dimer-dimer scatterings (G.Rupak 2006) Phase structure of polarized Fermi gas with (un)equal masses (Y.N. 2007, G.Rupak & T.Schafer & A.Kryjevski 2007) BCS-BEC crossover (J.W.Chen & E.Nakano 2007) Momentum distribution & condensate fraction (Y.N. 2007) Energy of a few atoms in a harmonic potential (Y.N. & D.T.Son 2007) Low-energy dynamics (A.Kryjevski 2008) Energy-density functional (G.Rupak & T.Schafer 2009) …
32
32/32 Thermodynamics & Quasiparticle spectrum (Y.N. & D.T.Son 2006) Atom-dimer & dimer-dimer scatterings (G.Rupak 2006) Phase structure of polarized Fermi gas with (un)equal masses (Y.N. 2007, G.Rupak & T.Schafer & A.Kryjevski 2007) BCS-BEC crossover (J.W.Chen & E.Nakano 2007) Momentum distribution & condensate fraction (Y.N. 2007) Energy of a few atoms in a harmonic potential (Y.N. & D.T.Son 2007) Low-energy dynamics (A.Kryjevski 2008) Energy-density functional (G.Rupak & T.Schafer 2009) … Summary Very simple and useful starting points to understand the unitary Fermi gas in d=3 ! Fermi gas at infinite scattering length = New strongly interacting matter in cold atoms Unitary Fermi gas around d=4 becomes weakly-interacting system of fermions & bosons Weakly-interacting system of fermions around d=2
33
33/32 Back up slides
34
34/32 NNLO correction for Arnold, Drut, Son, Phys.Rev.A (2006) Fit two expansions using Padé approximants d Interpolations to 3d NNLO 4d + NNLO 2d cf. NLO 4d + NLO 2d Nishida, Ph.D. thesis (2007) ♦=0.40
35
35/32 unitarity BCS BEC Gapped superfluid 1-plane wave FFLO : O( 6 ) Polarized normal state Polarized Fermi gas around d=4 Rich phase structure near unitarity point in the plane of and : binding energy Stable gapless phases (with/without spatially varying condensate) exist on the BEC side of unitarity point Gapless superfluid
36
36/32 Borel summation with conformal mapping =1.2355 0.0050 & =0.0360 0.0050 Boundary condition (exact value at d=2) =1.2380 0.0050 & =0.0365 0.0050 expansion in critical phenomena O(1) 2 3 4 5 LatticeExper. 11.1671.2441.1951.3380.8921.239(3) 1.240(7) 1.22(3) 1.24(2) 000.01850.03720.02890.05450.027(5) 0.016(7) 0.04(2) Critical exponents of O(n=1) 4 theory ( =4-d 1) expansion is asymptotic series but works well ! How about our case???
37
37/32 2 fermions in a harmonic potential T.Busch et.al., Found. Phys. (1998) T.Stoferle et al., Phys.Rev.Lett. (2006)
38
38/32 2 fermions in a harmonic potential |a|
39
39/32 Quasiparticle spectrum - i ( p ) = Fermion dispersion relation : ( p ) Energy gap : Location of min. : LO self-energy diagrams 0 Expansion over 4-d Expansion over d-2 or O( )
40
40/32 Extrapolation to d=3 from d=4- Keep LO & NLO results and extrapolate to =1 J.Carlson and S.Reddy, Phys.Rev.Lett. 95, (2005) Good agreement with recent Monte Carlo data NLO corrections are small 5 ~ 35 % NLO are 100 % cf. extrapolations from d=2+
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.