Download presentation
Presentation is loading. Please wait.
Published byVirginia Ward Modified over 9 years ago
1
Analysis, Modelling and Simulation of Energy Systems, SEE-T9 Mads Pagh Nielsen 5. mm. systematic modelling What motivates the concept of systematic modelling? The multigate-method used in systematic modelling Introduction to the software MULTIPORT A primer on combustion calculations
2
Analysis, Modelling and Simulation of Energy Systems, SEE-T9 Mads Pagh Nielsen Motivation: - The complexity of real systems [Cycle Tempo]
3
Analysis, Modelling and Simulation of Energy Systems, SEE-T9 Mads Pagh Nielsen Motivation Real thermodynamic systems are complex. Non-linear equation sets can be tremendously huge making testing and error tracing difficult and time-demanding. Systematic modelling gives overview and ensures that the correct conservation equations are set up.
4
Analysis, Modelling and Simulation of Energy Systems, SEE-T9 Mads Pagh Nielsen Methods -Energy and mass balance equations at a multigate approach: Note: Enthalpies must have some referece states! The modelled phenomenon must be stationar. Note neglected terms and assumptions! )( )1( )( )1( jstream out istream in mm Continuity )( )1( )( )1( )( )1( )( )1( )( )1(, )( )1(, jstream n in mstream out lstream in kstream out mixout istream inmixin WWQQhmhm energy of onConservati
5
Analysis, Modelling and Simulation of Energy Systems, SEE-T9 Mads Pagh Nielsen Standard component models {///////////////////////////////////////////////////} {///////// HE Water-Water /////////} {///////////////////////////////////////////////////} m[!!!]=m[&&&] m[&&&]*(h[&&&]-h[!!!])*1000=Q[&&&] p[!!!]=p[&&&] p[$$$]=p[###] T[!!!]=temperature(water;h=h[!!!]; p=p[!!!]) T[###]=temperature(water;h=h[###]; p=p[###]) Q[&&&]=U[&&&]*A[&&&]*dT[&&&] ddT[&&&]=T[&&&]-T[###] ddT[$$$]=T[!!!]-T[$$$] dT[&&&]=(ddT[&&&]-ddT[$$$])/ln(ddT[&&&]/ddT[$$$]) {///////////////////////////////////////} { Steam turbine } {///////////////////////////////////////} k_d[&&&]=(0,6466*(W[%%]/1e6)^(-0,5)- 0,3616*(W[%%]/1e6)^(-0,25)+1,3026) eta[&&&]=1/(k_d[&&&]*(1-0,151*((W[%%]/1e6)^(-0,25)- 0,34)*(103,4^(0,25)-p[&&&]^(0,25)))) s[&&&]=entropy(steam;p=p[&&&];T=T[&&&]) v[&&&]=volume(steam;p=p[&&&];T=T[&&&]) eta[&&&]=(h[&&&]-h[!!!])/(h[&&&]-h_s[!!!]) m[&&&]=C_t[&&&]*sqrt(((p[&&&]*1e5)^2- (p[!!!]*1e5)^2)/(p[&&&]*1e5*v[&&&])) h_s[!!!]=enthalpy(steam;s=s[&&&];p=p[!!!]) h[!!!]=enthalpy(steam;s=s[!!!];p=p[!!!]) T[!!!]=temperature(steam;s=s[!!!]; p=p[!!!]) x[!!!]=quality(steam; h=h[!!!]; p=p[!!!]) W_aksel[&&&]=W[%%] W_el[&&&]=W[%%]*0,96
6
Analysis, Modelling and Simulation of Energy Systems, SEE-T9 Mads Pagh Nielsen Example -Basic combined cycle plant
7
Analysis, Modelling and Simulation of Energy Systems, SEE-T9 Mads Pagh Nielsen Stationary modelling: A stationary system can always be modeled by setting up an equation set with N eqs. and N unknowns!
8
Analysis, Modelling and Simulation of Energy Systems, SEE-T9 Mads Pagh Nielsen Multigate approach: - Setting up the interconnection matrix ±1 ~ Primary flows ±2 ~ Secondary flows ±3 ~ Energy flows
9
Analysis, Modelling and Simulation of Energy Systems, SEE-T9 Mads Pagh Nielsen Systematic conservation equations Continuity: Energy: ICM is the interconnection matix, m is the mass flow vector and P is the energy flow vector For energy in flows: P=m·h
10
Analysis, Modelling and Simulation of Energy Systems, SEE-T9 Mads Pagh Nielsen System data: h gas =31 kJ/kg h luft =31 kJ/kg T pinch =10ºC h 8 =3.400 kJ/kg p 18 =40 bar p=1 bar p 13 =0,065 bar h 16 =40 kJ/kg h 17 =105 kJ/kg p 21 =1 bar h 21 =375 kJ/kg h 22 =175 kJ/kg A=4000 m² pump =80% 22MW 19 w pumpe - Boiler areas are unknown. - Output shaft powers are unknown.
11
Analysis, Modelling and Simulation of Energy Systems, SEE-T9 Mads Pagh Nielsen Property matrix:
12
Analysis, Modelling and Simulation of Energy Systems, SEE-T9 Mads Pagh Nielsen The ”closeure” component From the heat exchanger model we also have: => Overdetermined eq. set!
13
Analysis, Modelling and Simulation of Energy Systems, SEE-T9 Mads Pagh Nielsen Energy and mass conservation:
14
Analysis, Modelling and Simulation of Energy Systems, SEE-T9 Mads Pagh Nielsen Combustion calculations
15
Analysis, Modelling and Simulation of Energy Systems, SEE-T9 Mads Pagh Nielsen Dissociation Dissociation expresses the equilibrium of a given reaction. A chemical process never finishes. Therefore unintentional products like CO is Often part of the flue gas. Dissociation can in general be neglected for temperatures below 1600°C.
16
Analysis, Modelling and Simulation of Energy Systems, SEE-T9 Mads Pagh Nielsen Adiabatic combustion temp., T ad Numerical determination: Note! Real combustion temperature is always below the adiabatic combustion temperature!
17
Analysis, Modelling and Simulation of Energy Systems, SEE-T9 Mads Pagh Nielsen Heating values of a fuel Lower heating value (water on steam form): Heating value for mixtures T=25ºC, p=1 bar SubstanceChemical SignEnthalpy of formation [kJ/kmol] SteamH 2 O (g)-241.941 WaterH 2 O (lq)-285.975 CarbonmonooxideCO-110.576 CarbondioxideCO 2 -393.701 SulphurdioxideSO 2 -297.038 SulphortrioxideSO 3 -395.761 MethaneCH 4 -74.847 EthaneC2H6C2H6 -84.667 PropaneC3H8C3H8 -103.846 n-ButaneC 4 H 10 -124.732 NitrogenoxideNO90.290 NitrogendioxideNO 2 33.095 AmmoniacNH 3 -45.898
18
Analysis, Modelling and Simulation of Energy Systems, SEE-T9 Mads Pagh Nielsen When using MULTIPORT: Use Danish notation (decimal separator is ”,” in generated EES-models)!
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.