Download presentation
Presentation is loading. Please wait.
Published byEustacia Sanders Modified over 9 years ago
1
Presenter Ho-lin Chang
2
Introduction Design Implementation Evaluation Conclusion and future Work 2
3
Indoor location-based service 3 Healthcare Security Warehouse
4
Existed indoor localization technique – UWB – Ultrasound – WiFi 4 UWB WiFi Ultrasound
5
UWB (Ubisense) – Accuracy: 10 ~ 20 cm – Time difference of arrival – Expensive specialized hardware (10,000 USD) 5
6
Ultrasonic (Cricket) – Accuracy: 10 ~ 20 cm – Short range – Non-line of sight problem 6
7
WiFi (Ekahau, RADAR) – RSS fingerprinting – Accuracy: 3 ~ 5m – Low cost – Offline training 7
8
TechnologiesAccuracyProperties UWB15 cm Specialized hardware Ultrasound15 cm Short range Non-line of sight problem WiFi300~500 cm Offline training ?cm range Low cost Radio No offline training 8
9
Develop a novel localization system – Spinning beacon (RF) – Indoor environment – Sub-meter accuracy 50% < 39 cm 90% < 70 cm – Low cost Low cost motes (100 USD) Rotation motor 9
10
10
11
S SS X R Doppler Angulation 2 nd Doppler Angulation 3 rd Doppler Angulation LocalizationLocalization X 11 The location of X Doppler Angulation
12
X S v f v project 12
13
X Δf = 0 Hz Δf = 30 Hz Δf = - 30 Hz time frequency Δf (t) = ? 30Hz 0Hz - 30Hz v S 13
14
v(t) S X α x y d r S : (r cosθ, r sinθ) v(t) = (-ωr sinθ, ωr cosθ) θ(t) = ωt+φ X : (d cosα, d sinα) 14
15
S v(t) X α x y R β 15
16
16
17
centroid S SS X R Frequency observation observation Frequency observation observation Time delay estimation estimation Time delay estimation estimation Doppler Angulation 2 nd Doppler Angulation 3 rd Doppler Angulation LocalizationLocalization X 17 The location of X
18
18 500 Hz A 900 MHz 900 MHz + 500 Hz B centroid centroid Frequency observation observation Frequency observation observation Time delay estimation estimation Time delay estimation estimation Doppler Angulation 2 nd Doppler Angulation 3 rd Doppler Angulation LocalizationLocalization The location of X Typical RF frequency is too high. Radio Interferometry “Radio Interferometric Geolocation” [sensys ‘05] Typical RF frequency is too high. Radio Interferometry “Radio Interferometric Geolocation” [sensys ‘05]
19
19 centroid centroid Frequency observation observation Frequency observation observation Time delay estimation estimation Time delay estimation estimation Doppler Angulation 2 nd Doppler Angulation 3 rd Doppler Angulation LocalizationLocalization The location of X Delay-and-compare method
20
Hardware – Crossbow MICA2 – Rotational motor Software – TinyOS 1.x – C/C++ 20
21
Testbed – 國發所地下室停車場 – Three spinning beacons – 30 sample points (2m grid) 10 position samples (300 samples) 3 angles (900 angles) Evaluation metrics – Positional error – Angular error Parameter Tuning 21
22
50% < 3 degrees 90% < 10 degrees 50% < 3 degrees 90% < 10 degrees 22
23
50% < 3 degrees 90% < 10 degrees 50% < 39 cm 90% < 70 cm 23
24
Data collection time Rotational velocity Interference frequency Angulation filtering threshold – Minimum distance as a quality indicator 24
25
25
26
26
27
Lower frequency estimation precision 27
28
28
29
Track fast moving targets Rotational device 29
30
Develop a novel localization system – Spinning beacon – Indoor environment – Low cost – Sub-meter accuracy 39cm / 70cm 30
31
Reduce the localization latency – Reduce the routing time Distributed version Data compression Track the fast moving targets 31
34
34
35
r/d 0.1 0.3 0.5 0 35
36
36
37
37 k
38
AB X v fAfA fBfB |f A -f B | |f A + Δf X - f B |
39
R S A S S 39
40
40 Time Signal strength
41
Each infrastructure perceives different Doppler shift. Localize the target by different Doppler shifts X v 41 I I I II I
42
Maximum Doppler shift f : 900 MHz ω : 2.5 round/sec r : 30 cm ~ 50 cm 42
43
Data collection Routing Localization Data collection Routing Data collection Routing 0.3 ~ 1.5 sec 8 ~ 10 sec 1 st Doppler angulation 2 nd Doppler angulation 3 rd Doppler angulation Localization 43
44
v(t) S X α x y d r S : (r cosθ, r sinθ, 0) v(t) = (-ωr sinθ, ωr cosθ, 0) θ(t) = ωt+φ X : (d cosα, d sinα, h) 44
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.