Download presentation
Presentation is loading. Please wait.
Published byMoses French Modified over 9 years ago
1
New High Precision Linelist of H 3 + James N. Hodges, Adam J. Perry, Charles R. Markus, Paul A. Jenkins II, G. Stephen Kocheril, and Benjamin J. McCall June 16, 2014 - MK06
2
Outline Motivation Instrument Description Previous Work New Lines Future Directions
3
H 3 + Fundamental Benchmark Simplest polyatomic molecule Important for ab initio theory Relativistic, adiabatic and non- adiabatic effects on PES Accuracy of order 300 MHz for low energy Achieved experimental precision! O. L. Polyansky, et al. Phil. Trans. R. Soc. A (2012), 370, 5014-5027. C.M. Lindsay and B.J. McCall. J. Mol. Spectrosc. (2001), 210, 66-83.
4
H 3 + Fundamental Benchmark QED corrections applied to H 3 + Slightly better accuracy Better nonadiabatic corrections are needed Requires higher precision data! O.L. Polyanski et al. Phys. Rev. A (2014) 89, 032505. L.G. Diniz et al. Phys Rev. A (2013) 88, 032506.
5
H 3 + Forbidden Rotational Spectrum Enable quality prediction of forbidden rotational spectrum Predictions are limited to ~600 MHz Measuring fundamental, hot, and overtone bands with precision C.M. Lindsay and B.J. McCall. J. Mol. Spectrosc. (2001), 210, 66-83.
6
H 3 + Astronomical Importance Interstellar medium Deuterium fractionation Located in gas giants’ ionospheres Auroral winds Limited by lab accuracy T. R. Geballe and T. Oka, Nature (1996), 384, 334. P. Drossart et al. Nature (1989), 340, 539. D. Rego et al. Nature (1999), 399, 121. Images From: http://solarsystem.nasa.gov/planets/profile.cfm?Object=Jupiter http://www.ucl.ac.uk/~ucaptss/work/publications/royalsoc/energy.htm
7
Spectroscopic Technique Noise Immune Cavity Enhanced Optical Heterodyne Velocity Modulation Spectroscopy B. M. Siller, et al. Opt. Express (2011), 19, 24822-7. VMS Heterodyne Cavity Enhancement
8
Spectroscopic Technique Noise Immune Cavity Enhanced Optical Heterodyne Velocity Modulation Spectroscopy B. M. Siller, et al. Opt. Express (2011), 19, 24822-7. Ion Selectivity Sensitivity Large Signal NICE-OHVMS
9
Instrumental Layout OPO YDFL EOM Lock-In Amplifier X & Y Signal Lock-In Amplifier X & Y Signal 40 kHz Plasma Frequency 80 MHz 1 × Cavity Free Spectral Range 90 o Phase Shift I P S 2f i p s AOM K. N. Crabtree, et al. Chem. Phys. Lett. (2012), 551, 1-6. Ref. Cell Freq. Comb Wave- meter
10
Comb Calibration Wave- meter Freq. Comb AOM […] SignalPump
11
Comb Calibration Wave- meter Freq. Comb AOM […] SignalPump
12
Comb Calibration Wave- meter Freq. Comb AOM […] SignalPump
13
Comb Calibration Wave- meter Freq. Comb AOM […] PumpSignal
14
Production of H 3 + Velocity modulated, l-N 2 cooled, positive column 40 kHz modulation frequency 300-500 mTorr of H 2 High J lines - few Torr of He
15
H 3 + Spectra Doubly Degenerate 2 Band H 3 + Transition Notation
16
Lamb Dips & Saturation High Power Optical Saturation Lamb dips In NICE-OHVMS fm-triplet causes many Lamb dips
17
Lamb Dips & Saturation High Power Optical Saturation Lamb dips In NICE-OHVMS fm-triplet causes many Lamb dips
18
Lamb Dips & Saturation High Power Optical Saturation Lamb dips In NICE-OHVMS fm-triplet causes many Lamb dips
19
Lamb Dips & Saturation High Power Optical Saturation Lamb dips In NICE-OHVMS fm-triplet causes many Lamb dips
20
Lamb Dips & Saturation High Power Optical Saturation Lamb dips In NICE-OHVMS fm-triplet causes many Lamb dips
21
Lamb Dips & Saturation High Power Optical Saturation Lamb dips In NICE-OHVMS fm-triplet causes many Lamb dips
22
Transition Frequencies R(1,0) transition of ν 2 band Lock-In Amplifier X & Y Signal Lock-In Amplifier X & Y Signal Hodges et al. J. Chem. Phys. (2013), 139, 164201. R(2,2) l transition of ν 2 band Relative Frequency (MHz)
23
Last Year’s Transition Freq. TransitionFreq. (MHz) a Shy (MHz) b R(1,1) l 80687424.25(62)80687433.437(250) R(1,0)81720377.29(23)81720371.550(250) R(1,1) u 81730020.44(38)81730028.328(250) R(2,2) l 82804769.99(31)82804761.121(250) R(2,1) l 82908940.58(125) R(2,2) u 84635537.25(54) R(2,1) u 84724846.57(38) R(3,3) l 84839013.46(39)84839021.536(250) R(3,2) l 84907118.76(134) R(4,4) l 86774648.52(39) a. Hodges et al. J. Chem. Phys. (2013), 139, 164201. b. Chen, Peng, Amano, Shy. “Precision Laser Spectroscopy of H 3 + ”. (2013) 68 th ISMS.
24
Some Additional Transition Freq. MoleculeTransitionFreq. (MHz) a Us-Prev. (MHz) HCO + P(5)92145080.8(4) R(3)92947717.3(5) ΔE J=5-3 802636.5(7)-0.6 b CH 5 + ???86880178.469(126)0.25 c a. Hodges et al. J. Chem. Phys. (2013), 139, 164201. b. Cazzoli et al. Astrophys. J., Suppl. Ser. (2012), 203, 11. c. S. Schlemmer. Private Communication, (2013). First Observed Lamb Dip of CH 5 + Hodges et al. J. Chem. Phys. (2013), 139, 164201. HeH + - Adam J. Perry. FA01, 116 RAL, 8:30 am. Relative Frequency (MHz)
25
Transition Freq. TransitionFreq. (MHz) a Schlemmer (MHz) b R(1,1) l 80687424.25(62)80687422.35(30) R(1,0)81720377.29(23)81720376.57(18) R(1,1) u 81730020.44(38)81730019.99(27) R(2,2) l 82804769.99(31)82804770.08(51) R(2,1) l 82908940.58(125) R(2,2) u 84635537.25(54)84635537.15(54) R(2,1) u 84724846.57(38) R(3,3) l 84839013.46(39) R(3,2) l 84907118.76(134) R(4,4) l 86774648.52(39) a. Hodges et al. J. Chem. Phys. (2013), 139, 164201. b. Asvany, Jusko, Schlemmer. Private Communication, (2014).
26
New Transition Freq. TransitionFreq. (MHz)St. Dev. (MHz)St. Err. (MHz)Us-Prev. (MHz) R(4,3) l 86778433.660.760.38208.97 a R(3,1) u 87789812.711.300.5358.30 a R(3,0)87844195.671.220.55118.86 a R(6,6) l 90368280.181.020.51-79.11 b a.T. Oka. Phil Trans R. Soc. London A (1981) 303, 543-549. b.C. M. Lindsay et al. J. Mol. Spectrosc. (2001) 210, 51-59. St. Err. = St. Dev. Of Mean
27
Future Directions Going to continue to measure transitions Want to predict forbidden rotational spectrum Going to need to expand frequency coverage for our instrument
28
Acknowledgements Springborn Fellowship NSF GRF (DGE 11-44245 FLLW)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.