Presentation is loading. Please wait.

Presentation is loading. Please wait.

Kinetic Molecular Theory Matter is composed of tiny particles (atoms, molecules or ions) with definite and characteristic sizes that never change. The.

Similar presentations


Presentation on theme: "Kinetic Molecular Theory Matter is composed of tiny particles (atoms, molecules or ions) with definite and characteristic sizes that never change. The."— Presentation transcript:

1 Kinetic Molecular Theory Matter is composed of tiny particles (atoms, molecules or ions) with definite and characteristic sizes that never change. The particles are in constant random motion, that is they possess kinetic energy. E k = 1 / 2 mv 2 The particles interact with each other through attractive and repulsive forces (electrostatic interactions), that is the possess potential energy. U = mgh The velocity of the particles increases as the temperature is increased therefore the average kinetic energy of all the particles in a system depends on the temperature. The particles in a system transfer energy form one to another during collisions yet no net energy is lost from the system. The energy of the system is conserved but the energy of the individual particles is continually changing.

2 PRESSURE A physical property of matter that describes the force particles have on a surface. Pressure is the force per unit area, P = F/A Pressure can be measured in: atmosphere (atm)atmosphere (atm) millimeters of mercury (mmHg)millimeters of mercury (mmHg) (torr) after Torricelli, the inventor of the mercury barometer (1643)(torr) after Torricelli, the inventor of the mercury barometer (1643) pounds per square inch (psi)pounds per square inch (psi) 1 atm = 760 mmHg = 760 torr = 14.69 psi

3 TEMPERATURE A physical property of matter that determines the direction of heat flow. Measured on three scales. Fahrenheit o F Celsius o CFahrenheit o F Celsius o C Kelvin KKelvin K o F = (1.8 o C) + 32 o C = ( o F - 32)/1.8 o F = (1.8 o C) + 32 o C = ( o F - 32)/1.8 K = o C + 273.15K = o C + 273.15

4 EMPIRICAL GAS LAWS Boyle’s Law P 1 V 1 = P 2 V 2 Charles’ LawV 1 / T 1 = V 2 / T 2 Combined Gas Law P 1 V 1 / T 1 = P 2 V 2 / T 2

5 Empirical Gas Laws 1. At 25 o C, a sample of N 2 gas under a pressure of 689 mmHg occupies 124 mL in a piston-cylinder arrangement before compression. If the gas is compressed to 75% of its original volume, what must be the new pressure (in atm) at 25 o C? First make a list of the measurements made: P 1 =689 mmHgV 1 = 124 mL P 2 = ?V 2 = 75% V1 From the variables, choose the appropriate equation, in this case Boyle’s Law: P 1 V 1 =P 2 V 2 (689 mmHg) (124 mL) = P 2 (0.75 x 124 mL) Solve for P 2 : P 2 = (689mmHg) (124 mL) / (93 mL) = 919 mmHg Now convert to atm: 1.21 atm 919 mmHg (1 atm / 760 mmHg) = 1.21 atm

6 Empirical Gas Laws 2. The gas in a Helium filled ball at 25 o C exerts a volume of 4.2 L. If the ball is placed in a freezer and the volume decreases to 1/8 of its original value, what is the temperature inside the ball? First make a list of the measurements made: V 1 =4.2 atmT 1 = 25 o Cc + 273.15 = 298.15 V 2 = 1/8 P 1 T 2 = ? From the variables, choose the appropriate equation, in this case Charles’ Law: V 1 /T 1 =V 2 /T 2 (V 1 ) / (298 K) = (1/8 V 1 ) / T 2 Solve for T 2 : T 2 = [(298 K) (1/8 V 1 )] / (V 1 ) = 298 / 8 = 37.3 K or -235 o C 3. A balloon containing 6.50 grams of NH 3 has a volume of 10.30 L at a temperature of 20.0 o C and a pressure of 689.2 torr. What would be the pressure of NH 3 if the volume decreased to 2.50 L without a change in temperature? Pressure of NH 3 = 2.84 x 10 3 torr.

7 COMBINED GAS LAW A gas occupies a volume of 720 mL at 37 o C and 640 mmHg pressure. Calculate the volume the gas would occupy at 273 K and 1 atm. P 1 V 1 / T 1 = P 2 V 2 / T 2 rearranged to solve for V 2 is: V 2 = P 1 V 1 T 2 / P 2 T 1 V 2 = (640 mmHg)(720 mL) (273 K) / (760 mmHg) (310 K) V 2 = 534 mL

8 COMBINED GAS LAW A gas occupies a volume of 720 mL at 37 o C and 640 mmHg pressure. –Calculate the pressure if the temperature is increased to 1000 o C & the volume expands to 900 mL. –Calculate the temperature if the pressure is decreased to 10 torr & the volume is reduced to 500 mL. P 2 = 2.1 x 10 3 mmHg T 2 = 3.4 K or -270 o C

9 PRACTICE PROBLEM # 20a 1. You prepared carbon dioxide by adding aqueous HCl to marble chips, calcium carbonate. According to your calculations, you should obtain 79.4 mL of carbon dioxide at 0 o C and 760 mmHg. How many milliliters of gas would you obtain at 27 o C at the same pressure? 2. Divers working from a North Sea drilling platform experiences pressures of 50 atm at a depth of 5.0 x 10 2 m. If a balloon is inflated to a volume of 5.0 L (the volume of a lung) at that depth at a water temperature of 4.0 o C, what would the volume of the balloon be on the surface (1.0 atm) at a temperature of 11 o C? 3. What volume would 5.30 L of H 2 gas at 0 o C and 760 mmHg occupy if the temperature was increased to 70 o F and the pressure to 830 torr? 4. The pressure gauge reads 125 psi on a 0.140-m 3 compressed air tank when the gas is at 33.0 o C. To what volume will the contents of the tank expand if they are released to an atmospheric pressure of 751 torr and a temperature of 13 o C? 5. A gas has a volume of 397.0 mL at 14.70 atm. What will be its pressure (in torr) if the volume is changed to 4.100 L? 87.3 mL 256 L 5.23 L 1.126 m 3 1082 torr

10 PRACTICE PROBLEM # 20a 6. Which of the following statements is false? a) If the Celsius temperature is doubled, the pressure of a fixed volume of gas would double. b) All collisions between gas molecules are perfectly elastic (no energy is lost) according to KMT. c) The volume of gas is inversely proportional to the temperature of gas present (P constant) d) Gases are capable of being greatly compressed. 7. Which of the following statements are true? a) In a large container of O 2 gas the pressure exerted by the oxygen will be greater at the bottom of the container. b) Of the three states of matter, gases are the most compact and the most mobile. c) The formula of ozone is 3 O 2. d) Molecules of O 2 gas and H 2 gas at the same temperature will have the same average kinetic energies and the same average velocities. C D

11 GROUP STUDY PROBLEMS 1. A sample of O 2 gas initially at 0 o C and 1.0 atm is transferred from a 2-L container to a 1-L container at constant temperature. a) What effect does this change have on the average kinetic energy of the gas molecules? b) What effect does the total number of collisions of O 2 molecules with the container walls in a unit time? 2. At constant pressure, a student needed to decrease a volume of 155 mL of Ne gas by 32.0%. To what temperature, (in o C), must the gas be cooled if the initial temperature was 21 o C? 3. A sample of CO 2 gas has a volume of 125.0 L at a pressure of 789 torr and a temperature of 30 o C. What will be the temperature if the pressure was increased to 900 torr & the volume decreased to 95.0 L? 4. 4. F 2 gas, which is dangerously reactive, is shipped in steel containers of 30.0 L capacity, at a pressure of 10.0 atm at 26.0 o C. What should be the volume of the tank if the pressure is increased to 820.0 torr & the temperature is 43.0 o C?


Download ppt "Kinetic Molecular Theory Matter is composed of tiny particles (atoms, molecules or ions) with definite and characteristic sizes that never change. The."

Similar presentations


Ads by Google